- 易 AI - 使用 TensorFlow 2 Keras 实现 AlexNet CNN 架构
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-alexnet-implementation前言网络结构实现SequentialSubclassingDemo小结参考前言上一篇笔者使用如何阅读深度学习论文的方法阅读了AlexNet。为了加深理解,本文带大家使用TensorFlow2Keras实现AlexNetCNN架构。网络结构image从上一篇可以得到Al
- 论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels
摘星星的屋顶
论文深度学习人工智能
一、ABSTRACT—摘要标题:Deep-learningseismicfull-waveforminversionforrealisticstructuralmodels(用于真实结构模型的深度学习地震全波形反演)作者:BinLiu1,SenlinYang2,YuxiaoRen2,XinjiXu3,PengJiang2,andYangkangChen4(和SeisInvNet有共同作者,应该是同
- 论文学习记录之SeisInvNet(Deep-Learning Inversion of Seismic Data)
摘星星的屋顶
论文人工智能
目录1INTRODUCTION—介绍2RELATEDWORKS—相关作品3METHODOLOGYANDIMPLEMENTATION—方法和执行3.1方法3.2执行4EXPERIMENTS—实验4.1数据集准备4.2实验设置4.3基线模型4.4定向比较4.5定量比较4.6机理研究5CONCLUSION—结论1INTRODUCTION—介绍地震勘探是根据地震波在大地中的传播规律来确定地下地层结构的一种
- 易 AI - 机器学习计算机视觉基础
CatchZeng
原文:http://makeoptim.com/deep-learning/yiai-cv计算机视觉表达黑白图灰度图彩色图操作卷积均值滤波归一化统一量纲加速模型训练梯度下降GPU浮点运算小结参考链接上一篇讲解了机器学习数据集的概念以及如何收集图片数据集。收集到的数据是被训练的对象,那么怎么表示这些数据呢?数据又需要被怎么操作呢?本文为大家讲解计算机视觉基础,帮助大家在后面的课程中更好地理解和训练模
- 【Pytorch】Transposed Convolution
bryant_meng
pytorch人工智能python反卷积逆卷积
文章目录1卷积2反/逆卷积3MaxUnpool/ConvTranspose4encoder-decoder5可视化学习参考来自:详解逆卷积操作–Up-samplingwithTransposedConvolutionPyTorch使用记录https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convo
- 2-EagleC: A deep-learning framework for detecting a full range of structural variations from bulk...
怎么不是呐
Hi-C技术:检测人类基因组结构变异(SVs)的一种有前景的方法。目前严重缺乏能够使用Hi-C数据进行全范围SV检测的算法,只能以低于最佳的分辨率识别染色体间易位和远程染色体内SVs(>1mb)。本文开发了一个深度学习模型,结合了深度学习和集成学习策略的框架,以高分辨率预测全范围的SVs——EagleC在癌症基因组中认识了许多先前未知的融合事件,也发掘了已知致癌基因的新型调控机制,这些发现为癌症分
- 用数据玩点花样!如何构建skim-gram模型来训练和可视化词向量
机器之心V
php人工智能
本文介绍了如何在TensorFlow中实现skim-gram模型,并用TensorBoard进行可视化。GitHub地址:https://github.com/priya-dwivedi/Deep-Learning/blob/master/word2vec_skipgram/Skip-Grams-Solution.ipynb本教程将展示如何在TensorFlow中实现skim-gram模型,以便为
- Deep-learning
斗战胜佛oh
图卷积网络在药物研发中的应用综述尽管深度学习在很多领域在过去的几年取得了一定的成功,但是在分子信息和药物发现领域成功的应用依然有限。适用于深层架构的结构化数据方面的最新进展为药物研究开辟了新的范例。该篇从四个角度阐述了图神经网络在药物发现和分子信息领域的应用。1)分子属性和活性预测;2)相互作用预测;3)合成预测;4)从头药物设计。最后总结了药物相关问题的代表性应用。讨论将图卷积网络应用于药物发现
- 用BERT进行机器阅读理解
javastart
自然语言
这里可以找到带有代码的Github存储库:https://github.com/edwardcqian/bert_QA。本文将讨论如何设置此项功能.机器(阅读)理解是NLP的领域,我们使用非结构化文本教机器理解和回答问题。https://www.coursera.org/specializations/deep-learning?ranMID=40328&ranEAID=J2RDoRlzkk&ra
- 停车场车位检测思路梳理
杂七杂八的
输入列表图像,在工具台中输出图像defshow_images(self,images,cmap=None):输入的是某一张图片和给图片的name,make_write表示是否需要yyyyafafaffadfsfgf10.fhttps://github.com/priya-dwivedi/Deep-Learning/tree/master/parking_spots_detector/train_d
- AI - Ubuntu 机器学习环境 (TensorFlow GPU, JupyterLab, VSCode)
CatchZeng
原文:https://makeoptim.com/deep-learning/tensorflow-gpu-on-ubuntu介绍所需软件安装前GCCNVIDIApackagerepositoriesNVIDIAmachinelearningNVIDIAGPUdriverCUDAToolKitandcuDNNTensorRTMiniconda虚拟环境安装TensorFlow安装JupyterLab
- deep-learning(1) - 随手记录的知识点
Laniakea_01d0
业界通常认为第一层是隐藏层的第一层AI会遇上工程类问题Padding补零操作,可以保证卷积核在每块区域都进行卷积,迭代次数越多,更有效果,提取特征更好生成器和迭代器,存在的意义,一般我们需要对一个数组进行操作的时候,我们要遍历出来操作,比如一亿个参数,我们不可能一次性全部取出来,一个一个的去取,这就是生成器存在的意义。Dataloader加载数据到内存Next(iter(a))转换成0,1转换成正
- 易 AI - AlexNet 论文深度讲解
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-paper-alexnet论文地址阅读方式ImageNetClassificationwithDeepConvolutionalNeuralNetworks使用深度卷积神经网络的ImageNet分类Abstract摘要1Introduction1简介2TheDataset2数据集3TheArchitecture
- AI - Mac M1 机器学习环境 (TensorFlow, JupyterLab, VSCode)
CatchZeng
原文https://makeoptim.com/deep-learning/mac-m1-tensorflowXcodeCommandLineToolsHomebrewMiniforge下载AppleTensorFlow创建虚拟环境安装必须的包安装特殊版本的pip和其他包安装Apple提供的包(numpy,grpcio,h5py)安装额外的包安装TensorFlow测试JupyterLabVSCo
- 易 AI - 机器学习卷积神经网络(CNN)
CatchZeng
原文:http://makeoptim.com/deep-learning/yiai-cnn卷积神经网络结构输入层隐藏层输出层TensorFlow中定义卷积神经网络模型宏观理解卷积神经网络全连接采样卷积小结上一篇介绍了如何在TensorFlow中加载数据集。从本文开始将以王者荣耀为例,介绍卷积神经网络(CNN)。由于涉及的内容较多,本文主要先介绍以下内容:卷积神经网络结构TensorFlow中定义
- 易 AI - 使用 TensorFlow Object Detection API 训练自定义目标检测模型
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-object-detection前言目标检测位置发展史传统方法(候选区域+手工特征提取+分类器)RegionProposal+CNN(Two-stage)端到端(One-stage)TensorFlowObjectDetectionAPI安装依赖项安装API工程创建数据集图片标注创建TFRecord模型训练下载
- AI - Mac 机器学习环境 (TensorFlow, JupyterLab, VSCode)
CatchZeng
原文:https://makeoptim.com/deep-learning/mac-tensorflowCondaAnacondaMiniconda创建虚拟环境安装tensorflow检查安装JupyterLab启动安装其他依赖JupyterLab运行tensorflow安装VSCodeVSCode运行tensorflow小结延伸阅读在MacM1机器学习环境讲述了如何在M1芯片的Mac搭建机器学
- NLP(新闻文本分类)——数据读取与数据分析
浩波的笔记
NLP机器学习pythonnlp
初始数据importpandasaspddf_train=pd.read_csv('E:/python-project/deep-learning/datawhale/nlp/news-data/train_set.csv/train_set.csv',sep='\t')df_test=pd.read_csv('E:/python-project/deep-learning/datawhale/n
- AI - Apple Silicon Mac M1 原生支持 TensorFlow 2.6 GPU 加速(tensorflow-metal PluggableDevice)
CatchZeng
原文:http://makeoptim.com/deep-learning/tensorflow-metal前言系统要求当前不支持XcodeCommandLineToolsHomebrewMiniforge创建虚拟环境安装Tensorflowdependencies首次安装升级安装安装Tensorflow安装metalplugin安装必须的包测试JupyterLabVSCode延伸阅读参考前言几天
- 易 AI - ResNet 论文深度讲解
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-paper-resnet论文地址阅读方式DeepResidualLearningforImageRecognition图像识别的深度残差学习Abstract摘要1Introduction1简介2RelatedWork2相关工作3.DeepResidualLearning3.深度残差学习3.1.ResidualL
- Windows安装PyTorch-CPU
Ann剑
安装PyTorchpytorchwindowspython
看了好多大佬的教程,终于给自己老旧电脑成功安装了PyTorch本电脑安装的软件PyTorch=1.12.1anaconda版本为conda4.8.2(anaconda自行安装)开始前以管理员方式运行anacondaprompt一、安装PyTorch一、安装PyTorch(1)创建环境为deep-learning,也可以为PyTorch(就是一个名字)。指定Python版本condacreate-n
- transformer(Bert)的多头注意力对每一个head进行降维的分析
想赚钱的雷大
背景:在用keras的multiattention模块做实验的时候,发现学习参数随着头数的增多而增多,与transformer中的实现不太一致结果:本着想了解透彻的思路去网上搜索了一番,第一篇我就觉得整理的不错,附上链接:http://www.sniper97.cn/index.php/note/deep-learning/note-deep-learning/4002/总结一下:一言蔽之的话,大
- nvidia 3060 + cuda + cudnn + tf
代码&诗
tensorflowpython深度学习
参考:https://eipi10.cn/deep-learning/2019/11/28/centos_cuda_cudnn/1.环境版本:CentOSLinuxrelease7.8.2003(Core)Tensorflow-gpu2.5nvidia3060cuda11.2.2cudnn-11.32.环境检查:lscpi|grep-invidia#要有nvidia设备3.首先安装nvidia-3
- identifier “THCudaCheck“ is undefined 的解决方法
莫说相公痴
MachineLearningPythonPytorch深度学习pytorch人工智能
THCudaCheck在pytorch1.11.0版本被移除了,可以看文档https://www.exxactcorp.com/blog/Deep-Learning/pytorch-1-11-0-now-available解决方法是将THCudaCheck替换成C10_CUDA_CHECK
- 交通事故预测—《Traffic Accident’s Severity Prediction: A Deep-Learning Approach-Based CNN Network》
永恒的记忆2019
科研论文python机器学习人工智能
一、文章信息《TrafficAccident’sSeverityPrediction:ADeep-LearningApproach-BasedCNNNetwork》,2019年Access上的一篇文章。二、摘要基于交通事故特征的权重,提出了基于特征矩阵的灰色图像(FM2GI)算法,将交通事故数据的单一特征关系转换为包含并行组合关系的灰色图像作为模型的输入变量,网络模型是基于CNN。(也就是说这篇文
- 通过 MQTT 检测对象和传输图像
woshicver
pythonopencvvnccvopengl
在本文中,我们将学习如何使用open-cv和YOLO对象检测器每五秒捕获/保存和检测图像中的对象。然后我们将图像转换为字节数组并通过MQTT发布,这将在另一个远程设备上接收并保存为JPG。我们将使用YoloV3算法和一个免费的MQTT代理YoloV3算法:https://viso.ai/deep-learning/yolov3-overview/#:~:text=What's%20Next%3F-
- DNN(Deep-Learning Neural Network)
sherlock31415931
ML神经网络深度学习人工智能tensorflownumpy
DNN(Deep-LearningNeuralNetwork)接下来介绍比较常见的全连接层网络(fully-connectedfeedfowardneruralnetwork)名词解释首先介绍一下神经网络的基本架构,以一个神经元为例输入是一个向量,权重(weights)也是一个矩阵把两个矩阵进行相乘,最后加上偏差(bias),即w1*x1+w2*x2+b神经元里面会有一个激活函数(activati
- AlexNet详解
tt丫
深度学习人工智能深度学习神经网络AlexNet
入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。✨完整代码在我的github上,有需要的朋友可以康康✨GitHub-tt-s-t/Deep-Learning:Storesomeofyourownin-depthlearningcode,whichiscurrentlyintheupdatestage.Thecontentcovers:each
- 论文解读:ProteinBERT: a universal deep-learning model of protein sequence and function
wangpan007
生信论文神经网络python编程深度学习神经网络python
目录1.研究背景2.研究数据2.1预训练的蛋白质数据集2.2蛋白质基准数据集3.研究方法3.1序列和标注编码3.2蛋白质序列和注释的自我监督预训练3.3对蛋白质基准进行监督微调3.4深度学习框架4.结果4.1预训练可以改善蛋白质模型4.2ProteinBERT在不同的蛋白质基准上达到了近乎最先进的结果4.4全局注意力机制的理解5.结论作者单位:耶路撒冷希伯来大学发表期刊:《Bioinformati
- 【U-Net2015】U-Net: Convolutional Networks for Biomedical Image Segmentation mage Segmentation
不会声调的博er
深度学习caffe计算机视觉
U-Net:ConvolutionalNetworksforBiomedicalmageSegmentation生物医学图像语义分割的卷积神经网络arXiv:1505.04597v1[cs.CV]18May2015文章地址:https://arxiv.org/abs/1505.04597代码地址:https://github.com/Jack-Cherish/Deep-Learning/tree/
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数