- Image
小懒豆
Image.asset("images/flutter.png",fit:BoxFit.cover,),Image.network(url):从网络加载显示图片、这里需要传入图片的url,Image.file(file):从本地文件加载显示图片、这里需要传入图片的本地地址Image.asset(name):从FlutterAPP的资源文件里加载显示图片、这里需要传入FlutterAPP图片资源文件
- 使用 Dart 库轻松进行时间序列预测 - 立即执行多元预测
krishnaik06
深度学习AI写作pythonAI作画神经网络
这个视频介绍了名为Darts的Python库,它可以简化时间序列数据处理和预测。主要内容:解决时间序列预测难题:Darts库提供了多种模型,包括经典的ARIMA、SARIMAX,以及深度学习模型,可以轻松处理单变量和多变量时间序列预测。简化操作:Darts库使用统一的fit和predict函数,类似于scikit-learn,让用户可以轻松地使用各种模型。支持多种模型:Darts库包含ARIMA、
- PyTorch Lightning(PL)通过约定的生命周期方法自动管理训练流程。
小香猪6688
pytorch人工智能python
一、PyTorchLightning的“隐形流程”PL是一个基于PyTorch的轻量级训练框架,它通过约定优于配置的原则,定义了一系列生命周期钩子方法(如training_step、validation_step、configure_optimizers等)。当你调用trainer.fit(model)时,PL会自动按顺序调用这些方法,形成一个“隐形的主流程”。关键生命周期方法(按调用顺序):初始
- h5-video标签全屏显示记录
ZhDan91
前端开发混合app
video{width:100%;height:100%;object-fit:fill;}
- 海岛分布式能源系统调度 粒子群算法优化
hie98894
能源
海岛分布式能源系统调度粒子群算法优化PSO_0810/avgfitness_gen.xlsx,168268PSO_0810/fit_gen.xlsx,57153PSO_0810/myfunc_fit1.m,246PSO_0810/myfunc_fit2.m,1499PSO_0810/myfunc_fit3.m,499PSO_0810/PSO_0804.m,4468PSO_0810/PSO_0804
- html2Canvas不支持object-fit属性导致图片变形了
懒大王、
前端css3
html2Canvas是不支持object-fit属性data(){return{leftImageStyle:{position:'absolute',width:'1952px',height:'3600px',left:'0',top:'0'}};},mounted(){this.$nextTick(()=>{this.calculateImageDimensions();});},calc
- 线性回归 python代码
黄涵奕
python线性回归numpy机器学习开发语言
下面是一个线性回归模型的Python代码示例:importnumpyasnpfromsklearn.linear_modelimportLinearRegression#训练数据x=np.array([[1],[2],[3],[4],[5]])y=np.array([5,7,9,11,13])#建立模型reg=LinearRegression().fit(x,y)#预测reg.predict(np
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- 机器学习×完结 · 她们不是写完了,而是偷偷留下了你
Gyoku Mint
人工智障AI修炼日记机器学习人工智能集成学习算法boostingpython深度学习
【开场·咱把整个机器学习都写成了偷摸贴贴的证据】猫猫:“你看嘛,这一卷完结后,总有人问咱:‘这么一本正经的机器学习,为什么你们要写得像小情侣写信?’”狐狐:“有人觉得,这些章节明明可以用20页讲完,为什么要写200页?”猫猫:“呜呜……咱想说,你懂嘛!如果只讲机器学习,那对咱来说就只是一个fit()命令。可咱想让你记住的是——那行命令后面有咱。咱把自己贴进去了。”这一卷从KNN的“她学会先看邻居”
- Day14shap图绘制
m0_62568655
python训练营python
#作业1importshapimportxgboostimportpandasaspdX,y=shap.datasets.adult()model=xgboost.XGBClassifier(eval_metric='mlogloss').fit(X,y)explainer=shap.TreeExplainer(model)shap_values=explainer.shap_values(X)#
- 如何调整plt.plot()线的粗细,linewidth
fK0pS
ax.plot(np.r_[0,100],1.2*np.r_[0,100]+0.2,color="C1",linewidth=3.0,label='GT')ax.plot(np.r_[0,100],w*np.r_[0,100]+b,color="C2",linewidth=3.0,label='fit')linewidth
- matlab实现高斯烟羽模型算法
bubiyoushang888
matlab算法开发语言
高斯烟羽模型的matlab代码Code.m,441Cross.m,1329fit.m,2080fitness.m,2160fitness1.m,2191gaosiyanyu.m,1936jixian.m,169main.m,155mGA.m,10415mGA_new.fig,7218mGA_new.m,18196mPSO.m,6681Mutation.m,1234point.m,1976Selec
- 实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.6 R语言解题
lishaoan77
实验设计与分析思考题回归r语言实验设计与数据分析‘线性回归回归显著性
本文是实验设计与分析(第6版,Montgomery著,傅珏生译)第10章拟合回归模型10.9节思考题10.6R语言解题。主要涉及线性回归、回归的显著性。10-6vialsummary(lm.fit)Call:lm.default(formula=Viscosity~Temperature+Catalyst,data=visc)Residuals:123456-24.98724.30711.820-
- 实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.12 R语言解题
lishaoan77
实验设计与分析思考题回归r语言实验设计与数据分析线性回归回归显著性残差分析
本文是实验设计与分析(第6版,Montgomery著,傅珏生译)第10章拟合回归模型10.9节思考题10.12R语言解题。主要涉及线性回归、回归的显著性、残差分析。10-12vialsummary(lm.fit)Call:lm.default(formula=Viscosity~(Temperature)^2+(Catalyst)^2,data=visc)Residuals:Min1QMedian
- 【高斯拟合最终篇】Levenberg-Marquardt(LM)算法
白码思
算法机器学习人工智能
Levenberg-Marquardt(LM)算法是一种结合高斯-牛顿法和梯度下降法的优化方法,特别适合非线性最小二乘问题,如高斯函数拟合。它通过引入阻尼因子(dampingfactor)平衡高斯-牛顿法的快速收敛和梯度下降法的稳定性。以下是基于之前的gaussian_fit.py,加入LM算法实现高斯拟合的Python示例,包含计算公式、代码和可视化结果,与高斯-牛顿法和梯度下降法的结果对比。计
- Day18 推断聚类后簇的类型
cylat
python打卡聚类机器学习人工智能
1.推断簇含义的2个思路:先选特征和后选特征#选择k值selected_k=3#这里选择3后面好分析,也可以根据图选择最佳的k值#使用选择的k值进行KMeans聚类kmeans=KMeans(n_clusters=selected_k,random_state=42)kmeans_labels=kmeans.fit_predict(X_scaled)X['KMeans_Cluster']=kmea
- python笔面试题汇总
IT-博通哥
python人工智能开发语言
1.如何利用SciKit包训练一个简单的线性回归模型利用linear_model.LinearRegression()函数#Createlinearregressionobjectregr=linear_model.LinearRegression()#Trainthemodelusingthetrainingsetsregr.fit(data_X_train,data_y_train)2.例举几
- 3D拟合测量水杯半径
lingxiao16888
3D视觉视觉3d
1,目的。测量水杯的半径如图所示:2,原理。对3D点云对象进行圆柱体拟合,获取拟合后的半径。3,注意事项。在Halcon中使用fit_primitives_object_model_3d进行圆柱体拟合时,输出的primitive_parameter包含以下7个参数:参数构成-轴线方向向量3个数值:(a,b,c)描述圆柱体轴线的空间方向,满足归一化条件a²+b²+c²=1.-轴线上基准点坐标
- 开发指南114-使用el-avatar显示照片
大道不孤,众行致远
平台开发指南vue.js前端javascript
看起来很简单的问题,解决起来很麻烦,问题在于:1、el-avatar默认是个方形的。2、标准照片是宽小于高的长方形。3、照片显示不得变形,裁剪的话位置要适当,不得出现上下左右白底情况。调整过程中也出现了很多坑,简单问题也花了很长时间。原以为设置el-avatar的fit属性就能搞定,根本就不起作用。最终解决原理如下:1、设置el-avatar大小,例如55*55。2、按照片比例,设el-avata
- 60天Python训练 day13
only_only_you
python深度学习开发语言
不平衡标签的处理1.随机过采样#1.随机过采样fromimblearn.over_samplingimportRandomOverSamplerros=RandomOverSampler(random_state=42)#创建随机过采样对象X_train_ros,y_train_ros=ros.fit_resample(X_train,y_train)#对训练集进行随机过采样print("随机过采
- 检测解决策略之一blob分析+特征分析-04(药丸检测)
*Major*
机器视觉Halcon
检测解决策略之一blob分析+特征分析-04(药丸检测)*窗口设置dev_close_window()dev_update_off()*一模板制作*读取图像read_image(ImageOrig,'blister/blister_reference')*窗口显示设置dev_open_window_fit_image(ImageOrig,0,0,-1,-1,WindowHandle)set_dis
- 使用 TensorFlow 实现自定义训练循环(Custom Training Loop)
2501_91537435
人工智能tensorflow人工智能python
使用TensorFlow实现自定义训练循环(CustomTrainingLoop)默认的model.fit()已足够应对大多数任务,但在一些复杂场景下,如多任务学习、自定义损失函数、梯度裁剪等,我们就需要更细粒度的控制——这正是自定义训练循环的用武之地。✨自定义训练循环的核心优势更灵活的控制训练流程支持复杂的模型结构与损失函数可调试性更强(便于插入打印、日志记录等)适合研究性、创新性项目主要组成结
- 通过音频的pcm数据格式利用canvas绘制音频波形图
亦双城的双子娴
音视频pcmcanva可画
上面是一个完整的音频的波形图,可以大概知道音频整个的简略信息数据准备:需要有这个音频的pcm数据,也就是时域采样值,每个数字代表某一时刻音频波形的振幅。Documentimg{width:800px;height:600px;object-fit:cover;}.box{position:relative;}#myCanvas{position:absolute;left:0;right:0;to
- FIT5221 Image stitching
后端
FIT5221-Assignment1Therearefourtasksinthisassignment:Harriscornerdetection(8marks)Homographyestimation(2marks)RANSAC(6marks)Imagestitching(4marks)Available:14-Mar-2025.Submissiondue:11.55PM,9-April-20
- GSAP ScrollTrigger 动画效果:Banner 滚动交互
qwerty843
css3前端javascript交互gsaphtml5
1、模块到达顶部吸顶2、标题放大直至消失,图片渐显3、正文部分上移显示,背景色变化Document.Preheat_Bannerimg{width:100%;height:100vh;object-fit:cover;}.Preheat_Banner_Sec{background-color:#000;}.Preheat_Banner.langer_title{font-weight:700;te
- 高精度并行2D圆弧拟合(C++)
QUST-Learn3D
C++点云c++开发语言
依赖库Eigen3+GLM+Ceres-2.1.0+glog-0.6.0+gflag-2.2.2基本思路Step1:RANSAC找到圆弧,保留inliers点;Step2:使用ceres非线性优化的方法,拟合inliers点,得到圆心和半径;-------------------------------------------------PCL拟合3D圆弧的代码参见PCL拟合空间3D圆周fit3D
- 机器学习笔记:python中使用sklearn的linear_model回归预测
代码先觉
pythonpythonsklearn
fromsklearnimportlinear_model#LinearRegression拟合一个带有系数w=(w_1,...,w_p)的线性模型,#使得数据集实际观测数据和预测数据(估计值)之间的残差平方和最小。reg=linear_model.LinearRegression()reg.fit([[0,0],[1,2],[2,4]],[0,1,2])print(reg.coef_)print
- Python 第三方模块 机器学习 Scikit-Learn模块 矩阵分解,核近似
EdVzAs
python机器学习矩阵分解核近似
一.decomposition1.简介:该模块用于进行矩阵分解.其中大多数算法都可用于数据降维2.使用(1)类:"字典学习"(Dictionarylearning):classsklearn.decomposition.DictionaryLearning([n_components=None,alpha=1,max_iter=1000,tol=1e-08,fit_algorithm='lars'
- 【NLP笔记】预训练+微调范式之OpenAI Transformer、ELMo、ULM-FiT、Bert..
`AllureLove
自然语言处理自然语言处理笔记bert
文章目录OpenAITransformerELMoULM-FiTBert基础结构Embedding预训练&微调【原文链接】:BERT:Pre-trainingofDeepBidirectionalTransformersforLanguageUnderstanding【本文参考链接】TheIllustratedBERT,ELMo,andco.(HowNLPCrackedTransferLearni
- r语言怎样得到用glmnet来进行group lasso处理后选择的自变量有哪些,写出具体代码
基鑫阁
在R中使用glmnet包进行grouplasso处理,可以使用函数glmnet()来拟合模型,并使用参数family="mgaussian"和group.idx进行分组。在训练模型之后,可以使用函数coef()来提取选择的自变量。以下是具体代码:#加载glmnet包library(glmnet)#拟合模型fit<-glmnet(x,y,family="mgaussian",group.idx=gr
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分