C:\ProgramFiles\mingw-w64\x86_64-7.1.0-posix-seh-rt_v5-rev0\mingw64/bin/mingw32-make
添加后重新打开git bash(win10系统还需重新开下机)
$ which mingw32-make检查是否添加成功
2、编译
切换到xgboost目录下编译
$ cd dmlc-core
$ make -j4
$ cd ../rabit
$ make lib/librabit_empty.a -j4
$ cd ..
$ cp make/mingw64.mk config.mk
$ make -j4
3、安装(仍是使用git bash)
xgboost目录下进入python-package
cd \xgboost\python-package
python setup.py install
4、检测
打开python编辑界面
import os
mingw_path = 'C:\\Program Files\\mingw-w64\\x86_64-5.3.0-posix-seh-rt_v4-rev0\\mingw64\\bin'
os.environ['PATH'] = mingw_path + ';' + os.environ['PATH']
import xgboost as xgb
import numpy as np
data = np.random.rand(5,10) # 5 entities, each contains 10 features
label = np.random.randint(2, size=5) # binary target
dtrain = xgb.DMatrix( data, label=label)
dtest = dtrain
param = {'bst:max_depth':2, 'bst:eta':1, 'silent':1, 'objective':'binary:logistic' }
param['nthread'] = 4
param['eval_metric'] = 'auc'
evallist = [(dtest,'eval'), (dtrain,'train')]
num_round = 10
bst = xgb.train( param, dtrain, num_round, evallist )
bst.dump_model('dump.raw.txt')
参考:
https://xgboost.readthedocs.io/en/latest/build.html#building-on-windows
https://github.com/dmlc/xgboost