Time Limit: 1000MS | Memory Limit: 10000K |
---|
The CE digital company has built an Automatic Painting Machine (APM) to paint a flat board fully covered by adjacent non-overlapping rectangles of different sizes each with a predefined color.
To color the board, the APM has access to a set of brushes. Each brush has a distinct color C. The APM picks one brush with color C and paints all possible rectangles having predefined color C with the following restrictions:
To avoid leaking the paints and mixing colors, a rectangle can only be painted if all rectangles immediately above it have already been painted. For example rectangle labeled F in Figure 1 is painted only after rectangles C and D are painted. Note that each rectangle must be painted at once, i.e. partial painting of one rectangle is not allowed.
You are to write a program for APM to paint a given board so that the number of brush pick-ups is minimum. Notice that if one brush is picked up more than once, all pick-ups are counted.
The first line of the input file contains an integer M which is the number of test cases to solve (1 <= M <= 10). For each test case, the first line contains an integer N, the number of rectangles, followed by N lines describing the rectangles. Each rectangle R is specified by 5 integers in one line: the y and x coordinates of the upper left corner of R, the y and x coordinates of the lower right corner of R, followed by the color-code of R.
Note that:
Color-code is an integer in the range of 1 .. 20.
Upper left corner of the board coordinates is always (0,0).
Coordinates are in the range of 0 .. 99.
N is in the range of 1..15.
One line for each test case showing the minimum number of brush pick-ups.
1
7
0 0 2 2 1
0 2 1 6 2
2 0 4 2 1
1 2 4 4 2
1 4 3 6 1
4 0 6 4 1
3 4 6 6 2
3
Tehran 1999
题意:给你一些矩阵,每一次你需要将矩阵凃上染色,但是上面的矩阵的染色会影响下面矩阵的染色,求改变最少的次数
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
typedef struct node
{
int x1,y1,x2,y2,op;
}No;
No a[20];
bool mp[20][20];
int Du[20];
bool vis[20];
int ans ;
int n;
void dfs(int u,int op,int num)
{
if(num == n)
{
ans = min(ans,op);
return ;
}
if(op>ans) return ;
for(int i =1;i<=n;i++)
{
if(mp[u][i])
{
Du[i]--;
}
}
for(int i = 1;i<=n;i++)
{
if(!vis[i] && Du[i] ==0)
{
vis[i] = true;
if(a[i].op == a[u].op)
{
dfs(i,op,num+1);
}
else
{
dfs(i,op+1,num+1);
}
vis[i] = false;
}
}
for(int i = 1;i<=n;i++)
{
if(mp[u][i])
{
Du[i]++;
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i = 1;i<=n;i++)
{
scanf("%d %d %d %d %d",&a[i].y1,&a[i].x1,&a[i].y2,&a[i].x2,&a[i].op);
}
memset(mp,false,sizeof(mp));
memset(Du,0,sizeof(Du));
for(int i = 1;i<=n;i++)
{
for(int j = 1;j<=n;j++)
{
if(i == j) continue;
if(a[j].y1 != a[i].y2) continue;
if((a[j].x1 >= a[i].x1 && a[j].x1>a[i].x2) ||(a[j].x1<=a[i].x1 && a[j].x2>=a[i].x2) || (a[j].x2>a[i].x1 &&a[j].x2<=a[i].x2))
{
mp[i][j] = true;
Du[j]++;
}
}
}
memset(vis,false,sizeof(vis));
ans = n+1;
for(int i =1;i<=n;i++)
{
if(Du[i] == 0)
{
vis[i] = true;
dfs(i,1,1);
vis[i] = false;
}
}
printf("%d\n",ans);
}
return 0;
}