题目描述:
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Given matrix = [ [1, 0, 1], [0, -2, 3] ] k = 2
The answer is 2
. Because the sum of rectangle [[0, 1], [-2, 3]]
is 2 and 2 is the max number no larger than k (k = 2).
Note:
但是其实这个题只要把每个矩形的面积求出来就行了。
用sums[i][j]表示从( 0,0 )直到(i,j)范围内的矩阵和。
代码如下:
public class Solution { public int maxSumSubmatrix(int[][] matrix, int k) { int row=matrix.length; int col=matrix[0].length; int[][] sums=new int[row][col]; sums[0][0]=matrix[0][0]; for (int i = 1; i < row; i++) { sums[i][0]=sums[i-1][0]+matrix[i][0]; } for (int j = 1; j < col; j++) { sums[0][j]=sums[0][j-1]+matrix[0][j]; } for (int i = 1; i <row; i++) { for (int j = 1; j < col; j++) { sums[i][j]=sums[i-1][j]+sums[i][j-1]-sums[i-1][j-1]+matrix[i][j]; } } int ans=Integer.MIN_VALUE; for (int si = 0; si < row; si++) { for (int sj = 0; sj < col; sj++) { for (int ei = si; ei < row; ei++) { for (int ej = sj; ej < col; ej++) { int test=0; if (si==0&&sj==0) { test=sums[ei][ej]; }else if(si==0){ test=sums[ei][ej]-sums[ei][sj-1]; }else if(sj==0){ test=sums[ei][ej]-sums[si-1][ej]; }else{ test=sums[ei][ej]-sums[si-1][ej]-sums[ei][sj-1]+sums[si-1][sj-1]; } if (test<=k&&test>ans) { ans=test; } } } } } return ans; } }