the contiguous subarray [4,−1,2,1] has the largest sum = 6.
想到了二分法。
这个最大值要么包括nums[mid],要么就是在mid的左边或者右边。
要考虑到细节,不然就会出错!代码如下:
public class Solution { public int maxSubArray(int[] nums) { return findMaxSub(nums, 0, nums.length-1); } public int findMaxSub(int[] nums,int left,int right){ if(left==right) return nums[left]; if(left>right) return Integer.MIN_VALUE; int mid=(left+right)/2,midSum=nums[mid]; int midLeft=mid-1,midLeftsum=0,leftSum=Integer.MIN_VALUE; while(midLeft>=left){ midLeftsum+=nums[midLeft--]; if(midLeftsum>leftSum) leftSum=midLeftsum; } int midRight=mid+1,midRightSum=0,rightSum=Integer.MIN_VALUE; while(midRight<=right){ midRightSum+=nums[midRight++]; if(midRightSum>rightSum){ rightSum=midRightSum; } } if(leftSum>0) midSum+=leftSum; if(rightSum>0) midSum+=rightSum; int leftMaxSub=findMaxSub(nums, left, mid-1); int rightMaxSub=findMaxSub(nums, mid+1, right); return Integer.max(Integer.max(leftMaxSub, rightMaxSub),midSum); } }这个题用动态规划解是最简单的:
public class Solution { public int maxSubArray(int[] A) { int[] sum = new int[A.length]; int max = A[0]; sum[0] = A[0]; for (int i = 1; i < A.length; i++) { sum[i] = Math.max(A[i], sum[i - 1] + A[i]); max = Math.max(max, sum[i]); } return max; } }