转载老熊的博客:
Oracle 11g从发布到现在,也有几个年头了。而在国内来说,Oracle 10g仍然是主流,甚至一些电信运营商的核心系统仍然在使用9i。作为Oracle 10g的一项新特性,SQL Profiles被使用得并不太多。不管是在论坛、个人的BLOG还是其他一些地方,SQL Profiles的介绍也相对较少。对我个人来说,已经在多个优化场合中使用SQL Profiles,在这里向大家介绍SQL Profiles,就是希望能够了解Oracle数据库的这一功能。
SQL Profiles可以说是Outlines的进化。Outlines能够实现的功能SQL Profiles也完全能够实现,而SQL Profiles具有Outlines不具备的优化,个人认为最重要的有2点:
关于这2方面的优点,我后面会详细地阐述。
现在我在使用Outlines的场合,均使用SQL Profiles来替代。有一次准备对1条SQL语句使用Outline进行执行计划的稳定,结果使用Outline之后,系统出现大量的library cache latch的争用,不得不关闭Outline的使用,但是改用SQL Profiles不再有这个问题。这或许是个BUG,不过既然能用SQL Profiles代替,也就没再深入去研究这个问题。
使用SQL Profiles无非是两个目的:
那么SQL Profile到底是什么?在我看来,SQL Profile就是为某一SQL语句提供除了系统统计信息、对象(表和索引等)统计信息之外的其他信息,比如运行环境、额外的更准确的统计信息,以帮助优化器为SQL语句选择更适合的执行计划。这些说法显得比较枯燥,还是来看看下面的测试。
首先建2个测试表:
然后看看下面这一条SQL:
SQL> create table t1 as select object_id,object_name from dba_objects where rownum<=50000; 表已创建。 SQL> create table t2 as select * from dba_objects; 表已创建。 SQL> create index t2_idx on t2(object_id); 索引已创建。 SQL> exec dbms_stats.gather_table_stats(user,'t1',cascade=>true,method_opt=>'for all columns size 1'); PL/SQL 过程已成功完成。 SQL> exec dbms_stats.gather_table_stats(user,'t2',cascade=>true,method_opt=>'for all columns size 1'); PL/SQL 过程已成功完成。
SQL> select t1.*,t2.owner from t1,t2 where t1.object_name like '%T1%' and t1.object_id=t2.object_id; 已选择29行。 执行计划 ---------------------------------------------------------- Plan hash value: 1838229974 --------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | --------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 2498 | 99920 | 219 (4)| 00:00:03 | |* 1 | HASH JOIN | | 2498 | 99920 | 219 (4)| 00:00:03 | |* 2 | TABLE ACCESS FULL| T1 | 2498 | 72442 | 59 (6)| 00:00:01 | | 3 | TABLE ACCESS FULL| T2 | 49954 | 536K| 159 (2)| 00:00:02 | --------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - access("T1"."OBJECT_ID"="T2"."OBJECT_ID") 2 - filter("T1"."OBJECT_NAME" LIKE '%T1%') 统计信息 ---------------------------------------------------------- 0 recursive calls 0 db block gets 932 consistent gets 0 physical reads 0 redo size 1352 bytes sent via SQL*Net to client 385 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 29 rows processed
这里省略了SELECT出来的具体数据,但是我们关心的是返回的结果行数、执行计划以及逻辑读这些信息。
首先从执行计划可以看到,这条SQL语句在2个表上都是全表扫描。在第1个表T1上,有 like ‘%T1%’这样的条件,导致只能全表扫描,这没有问题。但是第2个表,也是全表扫描,这里有没有问题呢?或者说是有没有优化的余地,答案显然是肯定的。
这里的问题在于执行计划ID=1的那一行,Oracle优化器评估T1 like ‘%T1%’返回的结果行数为2498行,即T1表总行数的5%,如果2个表采用index range scan+nested loop连接,oracle评估的成本会高于full table scan+hash join。下面可以看到Oracle优化器评估的index range_scan+nested loop的成本:
SQL> explain plan for select /*+ use_nl(t1 t2) index(t2) */ t1.*,t2.owner from t1,t2 where t1.object_name like '%T1%' and t1.object_id=t2.object_id; 已解释。 SQL> @showplan PLAN_TABLE_OUTPUT -------------------------------------------------------------------------------------- Plan hash value: 3787413387 -------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | -------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 2498 | 99920 | 5061 (1)| 00:01:01 | | 1 | TABLE ACCESS BY INDEX ROWID| T2 | 1 | 11 | 2 (0)| 00:00:01 | | 2 | NESTED LOOPS | | 2498 | 99920 | 5061 (1)| 00:01:01 | |* 3 | TABLE ACCESS FULL | T1 | 2498 | 72442 | 59 (6)| 00:00:01 | |* 4 | INDEX RANGE SCAN | T2_IDX | 1 | | 1 (0)| 00:00:01 | -------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("T1"."OBJECT_NAME" LIKE '%T1%') 4 - access("T1"."OBJECT_ID"="T2"."OBJECT_ID")
从执行计划可以看到Oracle优化器评估的成本为5061,远远高于原来的219。
但是实际的逻辑读是多少呢?
统计信息 ---------------------------------------------------------- 0 recursive calls 0 db block gets 290 consistent gets 0 physical reads 0 redo size 1352 bytes sent via SQL*Net to client 385 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 29 rows processed
加了HINT之后实际的逻辑读只有290,低于原始SQL的932。所以这里可以看出来,由于Oracle优化器过高地估计了T1表经过like操作过滤返回的行数,也就过高地估计了nest loop的成本,最终也就选择了不是最优的执行计划。
下面我们用Oracle的SQL Tuning Advisor来尝试这条SQL:
SQL> var tuning_task varchar2(100); SQL> DECLARE 2 l_sql_id v$session.prev_sql_id%TYPE; 3 l_tuning_task VARCHAR2(30); 4 BEGIN 5 l_sql_id:='4zbqykx89yc8v'; 6 l_tuning_task := dbms_sqltune.create_tuning_task(sql_id => l_sql_id); 7 :tuning_task:=l_tuning_task; 8 dbms_sqltune.execute_tuning_task(l_tuning_task); 9 dbms_output.put_line(l_tuning_task); 10 END; 11 / 任务_74 PL/SQL 过程已成功完成。 SQL> print tuning_task; TUNING_TASK --------------------------------------------------------------------------------------------------------- 任务_74 SQL> SELECT dbms_sqltune.report_tuning_task(:tuning_task) FROM dual; DBMS_SQLTUNE.REPORT_TUNING_TASK(:TUNING_TASK) -------------------------------------------------------------------------------- GENERAL INFORMATION SECTION ------------------------------------------------------------------------------- Tuning Task Name : 任务_74 Tuning Task Owner : TEST1 Scope : COMPREHENSIVE Time Limit(seconds) : 1800 Completion Status : COMPLETED Started at : 12/15/2010 09:56:02 Completed at : 12/15/2010 09:56:03 Number of SQL Profile Findings : 1 ------------------------------------------------------------------------------- Schema Name: TEST1 SQL ID : 4zbqykx89yc8v SQL Text : select t1.*,t2.owner from t1,t2 where t1.object_name like '%T1%' and t1.object_id=t2.object_id ------------------------------------------------------------------------------- FINDINGS SECTION (1 finding) ------------------------------------------------------------------------------- 1- SQL Profile Finding (see explain plans section below) -------------------------------------------------------- 为此语句找到了性能 Recommendation (estimated benefit: 46.62%) ------------------------------------------ -考虑接受推荐的 SQL executedbms_sqltune.accept_sql_profile(task_name => '任务_74', replace = TRUE); ------------------------------------------------------------------------------- EXPLAIN PLANS SECTION ------------------------------------------------------------------------------- 1- Original With Adjusted Cost ------------------------------ Plan hash value: 1838229974 --------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | --------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 29 | 1160 | 219 (4)| 00:00:03 | |* 1 | HASH JOIN | | 29 | 1160 | 219 (4)| 00:00:03 | |* 2 | TABLE ACCESS FULL| T1 | 29 | 841 | 59 (6)| 00:00:01 | | 3 | TABLE ACCESS FULL| T2 | 49954 | 536K| 159 (2)| 00:00:02 | --------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - access("T1"."OBJECT_ID"="T2"."OBJECT_ID") 2 - filter("T1"."OBJECT_NAME" LIKE '%T1%') 2- Using SQL Profile -------------------- Plan hash value: 3787413387 -------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | -------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 29 | 1160 | 117 (3)| 00:00:02 | | 1 | TABLE ACCESS BY INDEX ROWID| T2 | 1 | 11 | 2 (0)| 00:00:01 | | 2 | NESTED LOOPS | | 29 | 1160 | 117 (3)| 00:00:02 | |* 3 | TABLE ACCESS FULL | T1 | 29 | 841 | 59 (6)| 00:00:01 | |* 4 | INDEX RANGE SCAN | T2_IDX | 1 | | 1 (0)| 00:00:01 | -------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("T1"."OBJECT_NAME" LIKE '%T1%') 4 - access("T1"."OBJECT_ID"="T2"."OBJECT_ID") -------------------------------------------------------------------------------
上面代码中的sql_id是从v$sql来,对应的是没有加hint的SQL。
结果看起来非常棒,SQL Tuning Advisor为我们找到了理想的执行计划,T1表上经过谓词过滤后返回的行数评估为29,相当地精确。我们要做的就是Accept SQL Profile,接受这个SQL Profile。
SQL> execute dbms_sqltune.accept_sql_profile(task_name => :tuning_task,replace => TRUE,force_match=>true); PL/SQL 过程已成功完成。
那么我们再执行其他的类似SQL看看:
SQL> select t1.*,t2.owner from t1,t2 where t1.object_name like '%T2%' and t1.object_id=t2.object_id; 已选择77行。 执行计划 ---------------------------------------------------------- Plan hash value: 3787413387 -------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | -------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 29 | 1160 | 117 (3)| 00:00:02 | | 1 | TABLE ACCESS BY INDEX ROWID| T2 | 1 | 11 | 2 (0)| 00:00:01 | | 2 | NESTED LOOPS | | 29 | 1160 | 117 (3)| 00:00:02 | |* 3 | TABLE ACCESS FULL | T1 | 29 | 841 | 59 (6)| 00:00:01 | |* 4 | INDEX RANGE SCAN | T2_IDX | 1 | | 1 (0)| 00:00:01 | -------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("T1"."OBJECT_NAME" LIKE '%T2%') 4 - access("T1"."OBJECT_ID"="T2"."OBJECT_ID") Note ----- - SQL profile "SYS_SQLPROF_014b39f084c88000" used for this statement 统计信息 ---------------------------------------------------------- 1 recursive calls 0 db block gets 343 consistent gets 0 physical reads 0 redo size 2840 bytes sent via SQL*Net to client 385 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 77 rows processed
这一次,尽管我们更改了LIKE 后面的值,但是执行计划与SQL Tuning Advisor产生的执行计划完全一样。从执行计划的”Note“一节也可以看到,SQL Profile起作用了。SQL Profile的名字为”SYS_SQLPROF_014b39f084c88000″。
一些复杂的SQL,我经常会先通过SQL Tuning Advisor来分析一下,看能不能让Oracle自已找出一个更好的执行计划。
我们来看看,SQL Profiles实际上是些什么:
从sys.sqlprof$attr这个数字字典里面,我们可以看到两样东西:signature和attr。
signature是什么?可以理解为与sql_id、sql_hash_value类似的值,用来标识SQL。在10g以上的版本中,查看v$sql的定义就可以发现2列:exact_matching_signature、force_matching_signature。通过下面的数据可以看出区别:
SQL> select rownum,a.* from (select exact_matching_signature,force_matching_signature,plan_hash_value,sql_text from v$sql where sql_text like '%/*%xjs%' and sql_text not like '%v$sql%' order by 1) a; ROWNUM EXACT_MATCHING_SIGNATURE FORCE_MATCHING_SIGNATURE PLAN_HASH_VALUE SQL_TEXT ---------- ------------------------ ------------------------ --------------- -------------------------------------------------- 1 3939730931515200254 17443893418101517951 3617692013 select /* xjs */ object_name from T1 where obje ct_name='t1' 2 10964210455693560558 11097449316038436385 3836375644 select /* xjs */ object_name from T1 where rown um<=3 3 10964210455693560558 11097449316038436385 3836375644 select /* xjs */ object_name from T1 where ro wnum<=3 4 11217690300719901571 354482119692997204 3836375644 select /* xjs */ 2 from t1 where rownum<=1 5 11974975582747367847 354482119692997204 3836375644 select /* xjs */ 1 from t1 where rownum<=1 6 12941882703651921406 17443893418101517951 3617692013 select /* xjs */ object_name from T1 where obje ct_name='T1' 7 17986178357953662359 11097449316038436385 3836375644 select /* xjs */ object_name from T1 where rown um<=1 8 17986178357953662359 11097449316038436385 3836375644 select /* xjs */ OBJECT_NAME from T1 where rownum< =1 9 17986178357953662359 11097449316038436385 3836375644 SELECT /* xjs */ object_name from T1 where rown um<=1 10 17986178357953662359 11097449316038436385 3836375644 select /* xjs */ object_name from t1 where rownum< =1
从上面的数据可以看出:
有如下的结论:对SQL语句,去掉重复的空格(不包括字符常量),将大小写转换成相同,比如均为大写(不包括字符常量)后,如果SQL相同,那么SQL语句的exact_matching_signature就是相同的。对SQL语句,去掉重复的空格(不包括字符常量),将大小写转换成相同,比如均为大写(不包括字符常量),然后去掉SQL中的常量,如果SQL相同,那么SQL语句的force_matching_signature就是相同的。但是例外的情况是:如果SQL中有绑定变量,force_matching_signature就会与exact_matching_signature一样的生成标准。
可以看到,现在exact_matching_signature与force_matching_signature完全一样了。
从force_matching_signature的特性,我们可以想到一个用途,用于查找没有使用绑定变量的SQL语句,类似于使用plan_hash_value来查找。
回到前面,accept_sql_profile这个过程,force_match参数设为TRUE,那么dba_sql_profiles中的signature则是由SQL的force_matching_signature而来,否则便是exact_matching_signature。对于Outlines来说,则只能是exact_matching_signature。从这个角度上讲,Sql Profiles比Outlines的使用范围更广,因为Sql profiles对没有使用绑定变量的SQL也支持得很好。值得注意的是,Sql profiles的force_match属性是不能更改的,只能在创建时指定,如果要更改,则只能重新创建改Sql Profile。
下面来看看sys.sqlprof$attr数据字典。这里面没有SQL Profile的名字,而是用的sql的signature。大家从attr_val的结果发现了什么?
可以看到,SQL Profiles的attr_val实际上就是一些Hints,这跟Outlines没有本质上的区别。只是SQL Profiles中的Hint,没有指定SQL使用哪个索引,也没有指定表的连接方法和连接顺序。这里只指定了T1表评估返回的行数,与原始的评估返回的行数的放大缩小的倍数。2498*0.01161091426正好为29。这里就是告诉Oracle优化器,T1表经过谓语过滤后返回行数应该为评估的0.01161091426倍。从这里可以看出,SQL Profiles并不会锁定SQL的执行计划,只是提供了更多、更准确的统计信息给优化器。看下面的测试:
SQL> exec dbms_stats.set_table_stats('TEST1','T1',numrows=>5000000); PL/SQL 过程已成功完成。 SQL> explain plan for select t1.*,t2.owner 2 from t1,t2 3 where t1.object_name like '%T1%' 4 and t1.object_id=t2.object_id; 已解释。 SQL> @showplan PLAN_TABLE_OUTPUT ---------------------------------------------------------------------------------- Plan hash value: 1838229974 --------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | --------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 2903 | 113K| 448 (53)| 00:00:06 | |* 1 | HASH JOIN | | 2903 | 113K| 448 (53)| 00:00:06 | |* 2 | TABLE ACCESS FULL| T1 | 2903 | 84187 | 288 (81)| 00:00:04 | | 3 | TABLE ACCESS FULL| T2 | 49954 | 536K| 159 (2)| 00:00:02 | --------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - access("T1"."OBJECT_ID"="T2"."OBJECT_ID") 2 - filter("T1"."OBJECT_NAME" LIKE '%T1%') Note ----- - SQL profile "SYS_SQLPROF_014b39f084c88000" used for this statement
将T1表的统计信息中的表行数改为500万,Oracle就会评估为返回5000000*5%*0.01161091426=2903行。这里执行计划又变回为full scan+hash join。可以看到,虽然SQL Profile起作用了,但是并没有锁定执行计划。
小结:本文简单介绍了什么是SQL Profiles及其作用,如何使用SQL Tuning Advisor来生成SQL Profile,以及生成的SQL Profile产生的Hint。同时也介绍了SQL的signature。
下一篇将会介绍如何手工来为创建、生成SQL Profile,以及如何让SQL Profile也能像Outlines一样锁定SQL的执行计划,以保持SQL执行计划的稳定性。
下面为自己实践
1)创建表 DROP TABLE t1; DROP TABLE t2; CREATE TABLE t1 AS SELECT object_id, object_name FROM dba_objects WHERE ROWNUM <= 50000; CREATE TABLE t2 AS SELECT * FROM dba_objects; CREATE INDEX t2_idx ON t2 (object_id); 2)收集统计信息 exec dbms_stats.gather_table_stats(user,'t1',cascade=>true,method_opt=>'for all columns size 1'); exec dbms_stats.gather_table_stats(user,'t2',cascade=>true,method_opt=>'for all columns size 1'); 3)查看执行计划 SELECT t1.*, t2.owner FROM t1, t2 WHERE t1.object_name LIKE '%T1%' AND t1.object_id = t2.object_id; SELECT /*+ use_nl(t1 t3) index(t3) */ t1.*, t2.owner FROM t1, t2 WHERE t1.object_name LIKE '%T1%' AND t1.object_id = t2.object_id; 4)查找sql的sql_id SELECT * FROM SYS.V_$SQLSTATS ORDER BY ELAPSED_TIME DESC; SELECT * FROM v$sql s WHERE S.SQL_TEXT LIKE 'select /*%'; 5)创建任务 DECLARE my_task_name VARCHAR2 (30); BEGIN my_task_name := DBMS_SQLTUNE. CREATE_TUNING_TASK (task_name => 'my_sql_tuning_task', sql_id => '9azqw81dgpfan'); END; / 6)执行任务 BEGIN DBMS_SQLTUNE.EXECUTE_TUNING_TASK (task_name => 'my_sql_tuning_task'); END; / 7)查看建议执行建议相关内容 SELECT * FROM USER_ADVISOR_TASKS WHERE task_name = 'my_sql_tuning_task'; SELECT * FROM V$ADVISOR_PROGRESS; SELECT sofar, totalwork FROM V$ADVISOR_PROGRESS WHERE task_name = 'my_sql_tuning_task'; SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK ('my_sql_tuning_task') FROM DUAL; 8)接受profile execute dbms_sqltune.accept_sql_profile(task_name => 'my_sql_tuning_task',replace => TRUE,force_match=>true); 再次查看执行计划 SELECT /*+ use_nl(t1 t3) index(t3) */ t1.*, t2.owner FROM t1, t2 WHERE t1.object_name LIKE '%T1%' AND t1.object_id = t2.object_id; 9)删除任务 exec dbms_sqltune.drop_tuning_task('my_sql_tuning_task');