Function Run Fun
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2116 Accepted Submission(s): 1123
Problem Description
We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1
2 2 2
10 4 6
50 50 50
-1 7 18
-1 -1 -1
Sample Output
w(1, 1, 1) = 2
w(2, 2, 2) = 4
w(10, 4, 6) = 523
w(50, 50, 50) = 1048576
w(-1, 7, 18) = 1
按照题意做就好. 一共20*20*20 =8000个状态.记忆化搜索不重复计算,稳稳过;
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int w[23][23][23];
int get(int i,int j,int k)
{
if(i<=0||j<=0||k<=0) return 1;
if(i>20||j>20||k>20) return w[20][20][20]=get(20,20,20);
if(w[i][j][k]!=-1)
return w[i][j][k];
if(i<j&&j<k)
{
return w[i][j][k]=get(i,j,k-1)+get(i,j-1,k-1)-get(i,j-1,k);
}
else
{
return w[i][j][k]=get(i-1,j,k)+get(i-1,j-1,k)+get(i-1,j,k-1)-get(i-1,j-1,k-1);
}
}
int main()
{
memset(w,-1,sizeof(w));
int a,b,c;
while(scanf("%d%d%d",&a,&b,&c)!=EOF)
{
if(a==-1&&b==-1&&c==-1) break;
printf("w(%d, %d, %d) = ",a,b,c);
printf("%d\n",get(a,b,c));
}
return 0;
}