Given any permutation of the numbers {0, 1, 2,..., N-1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (<=105) followed by a permutation sequence of {0, 1, ..., N-1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:10 3 5 7 2 6 4 9 0 8 1Sample Output:
9
暴力瞎跑,如果0不在0位置上,那把0和该放在这个位置的数交换,直到0回到0位置,然后看看有没有不在自己位置上的,
和0换了,在按照上面的步骤执行就ok了。
#include<cmath> #include<queue> #include<string> #include<vector> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<functional> using namespace std; typedef long long LL; typedef unsigned long long ull; const int mod = 1e9 + 7; const int maxn = 2e5 + 10; int n, x, a[maxn], cnt, k = 0; int main() { scanf("%d", &n); cnt = 0; for (int i = 0; i < n; i++) { scanf("%d", &x); a[x] = i; } while (true) { while (a[0] != 0) { x = a[0]; cnt++; swap(a[x], a[0]); } for (int i = k; i < n; i++) if (a[i] != i) { swap(a[i], a[0]); cnt++; k = i; break; } else if (i == n - 1) { printf("%d\n", cnt); return 0; } } return 0; }