组合数学
GCD and LCM
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 451 Accepted Submission(s): 216
Problem Description
Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L?
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
Input
First line comes an integer T (T <= 12), telling the number of test cases.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.
Output
For each test case, print one line with the number of solutions satisfying the conditions above.
Sample Input
Sample Output
Source
2013 ACM-ICPC吉林通化全国邀请赛——题目重现
Recommend
liuyiding
1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4
5 using namespace std;
6
7 int main()
8 {
9 int t,L,G;
10 scanf("%d",&t);
11 while(t--)
12 {
13 scanf("%d%d",&G,&L);
14 if(L%G!=0)
15 {
16 puts("0");
17 continue;
18 }
19 int sk=L/G;
20 int pp=2,ans=1,cnt;
21 while(sk!=1)
22 {
23 cnt=0;
24 while(sk%pp==0)
25 {
26 cnt++;
27 sk/=pp;
28 }
29 pp++;
30 if(cnt!=0)
31 {
32 ans*=cnt*6;
33 }
34 }
35 printf("%d\n",ans);
36 }
37 return 0;
38 }