1. LinkedHashMap概述:
LinkedHashMap是HashMap的一个子类,它保留插入的顺序,如果需要输出的顺序和输入时的相同,那么就选用LinkedHashMap。
LinkedHashMap是Map接口的哈希表和链接列表实现,具有可预知的迭代顺序。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
LinkedHashMap实现与HashMap的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。
注意,此实现不是同步的。如果多个线程同时访问链接的哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须保持外部同步。
根据链表中元素的顺序可以分为:按插入顺序的链表,和按访问顺序(调用get方法)的链表。
默认是按插入顺序排序,如果指定按访问顺序排序,那么调用get方法后,会将这次访问的元素移至链表尾部,不断访问可以形成按访问顺序排序的链表。 可以重写removeEldestEntry方法返回true值指定插入元素时移除最老的元素。
2.LinkedHashMap接口
public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> {LinkedHashMap采用的hash算法和HashMap相同,但是它重新定义了数组中保存的元素Entry,该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而在哈希表的基础上又构成了双向链接列表
LinedHashMap接口的成员变量
/** * The head of the doubly linked list. */ private transient Entry<K,V> header; /** * The iteration ordering method for this linked hash map: <tt>true</tt> * for access-order, <tt>false</tt> for insertion-order. * * @serial */ private final boolean accessOrder;
accessOrder :true表示按照访问顺序迭代,false时表示按照插入顺序
LinkedHashMap的Entry
/** * LinkedHashMap entry. */ private static class Entry<K,V> extends HashMap.Entry<K,V> { // These fields comprise the doubly linked list used for iteration. Entry<K,V> before, after; Entry(int hash, K key, V value, HashMap.Entry<K,V> next) { super(hash, key, value, next); }HashMap的Entry
static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; Entry<K,V> next; final int hash; Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } }上面的两端代码可以看出LinkedHashMap的Entry元素继承了HashMap的Entry 并且保存了上一个元素的before和下一个元素的after
LinkedHashMap并未重写父类HashMap的put方法,而是重写了父类HashMap的put方法调用的子方法void recordAccess(HashMap m) ,void addEntry(int hash, K key, V value, int bucketIndex) 和void createEntry(int hash, K key, V value, int bucketIndex),提供了自己特有的双向链接列表的实现
LinkedHashMap的存储元素的方法
/** * Inserts this entry before the specified existing entry in the list. */ private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; } /** * This method is invoked by the superclass whenever the value * of a pre-existing entry is read by Map.get or modified by Map.set. * If the enclosing Map is access-ordered, it moves the entry * to the end of the list; otherwise, it does nothing. */ void recordAccess(HashMap<K,V> m) { LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; if (lm.accessOrder) { lm.modCount++; remove(); addBefore(lm.header); } }
/** * This override differs from addEntry in that it doesn't resize the * table or remove the eldest entry. */ void createEntry(int hash, K key, V value, int bucketIndex) { HashMap.Entry<K,V> old = table[bucketIndex]; Entry<K,V> e = new Entry<>(hash, key, value, old); table[bucketIndex] = e; e.addBefore(header); size++; }
public V put(K key, V value) { if (key == null) return putForNullKey(value); int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; }例子:
package com.my.collection; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.Map; public class MyLinkedHashMap { private static Map<String, Object> map = null; public static void initLinkedHashMap() { System.out.println("初始化Hashmap......."); // LinkedHashMap保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时, //先得到的记录肯定是先插入的.在遍历 // 的时候会比HashMap慢。 map = new LinkedHashMap<>(); map.put("1", "a"); map.put("2", "b");// 不允许键重复,允许值重复,如果键重复,最后的key的值将会覆盖第一个key的值 map.put("3", "c"); map.put("4", "d"); } /** * 遍历key和values */ public static void outEelem() { System.out.println("#####遍历key和values######"); // 遍历方式一 System.out.println("#####map.keySet()遍历key和values######"); for (String key : map.keySet()) { System.out.println("key" + key + "and value" + map.get(key)); } // 遍历方式二: Iterator<Map.Entry<String, Object>> it = map.entrySet().iterator(); System.out .println("#####通过Map.Entry<String, Object>使用Iterator遍历key和values######"); while (it.hasNext()) { Map.Entry<String, Object> entry = it.next(); System.out.println("key= " + entry.getKey() + " and value= " + entry.getValue()); } // 遍历方式三: System.out .println("##### 通过Map.Entry<String, Object> entry 遍历key和values######"); for (Map.Entry<String, Object> entry : map.entrySet()) { System.out.println("key= " + entry.getKey() + " and value= " + entry.getValue()); } // 遍历方式四: System.out.println("#####通过Map.values()遍历所有的value,但不能遍历key######"); for (Object value : map.values()) { System.out.println("Values " + value); } }//true表示按照访问顺序迭代,false时表示按照插入顺序 public static void main(String[] args) { initLinkedHashMap(); outEelem(); } }
/* * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.util; import java.io.*; /** * <p>Hash table and linked list implementation of the <tt>Map</tt> interface, * with predictable iteration order. This implementation differs from * <tt>HashMap</tt> in that it maintains a doubly-linked list running through * all of its entries. This linked list defines the iteration ordering, * which is normally the order in which keys were inserted into the map * (<i>insertion-order</i>). Note that insertion order is not affected * if a key is <i>re-inserted</i> into the map. (A key <tt>k</tt> is * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to * the invocation.) * * <p>This implementation spares its clients from the unspecified, generally * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}), * without incurring the increased cost associated with {@link TreeMap}. It * can be used to produce a copy of a map that has the same order as the * original, regardless of the original map's implementation: * <pre> * void foo(Map m) { * Map copy = new LinkedHashMap(m); * ... * } * </pre> * This technique is particularly useful if a module takes a map on input, * copies it, and later returns results whose order is determined by that of * the copy. (Clients generally appreciate having things returned in the same * order they were presented.) * * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is * provided to create a linked hash map whose order of iteration is the order * in which its entries were last accessed, from least-recently accessed to * most-recently (<i>access-order</i>). This kind of map is well-suited to * building LRU caches. Invoking the <tt>put</tt> or <tt>get</tt> method * results in an access to the corresponding entry (assuming it exists after * the invocation completes). The <tt>putAll</tt> method generates one entry * access for each mapping in the specified map, in the order that key-value * mappings are provided by the specified map's entry set iterator. <i>No * other methods generate entry accesses.</i> In particular, operations on * collection-views do <i>not</i> affect the order of iteration of the backing * map. * * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to * impose a policy for removing stale mappings automatically when new mappings * are added to the map. * * <p>This class provides all of the optional <tt>Map</tt> operations, and * permits null elements. Like <tt>HashMap</tt>, it provides constant-time * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and * <tt>remove</tt>), assuming the hash function disperses elements * properly among the buckets. Performance is likely to be just slightly * below that of <tt>HashMap</tt>, due to the added expense of maintaining the * linked list, with one exception: Iteration over the collection-views * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i> * of the map, regardless of its capacity. Iteration over a <tt>HashMap</tt> * is likely to be more expensive, requiring time proportional to its * <i>capacity</i>. * * <p>A linked hash map has two parameters that affect its performance: * <i>initial capacity</i> and <i>load factor</i>. They are defined precisely * as for <tt>HashMap</tt>. Note, however, that the penalty for choosing an * excessively high value for initial capacity is less severe for this class * than for <tt>HashMap</tt>, as iteration times for this class are unaffected * by capacity. * * <p><strong>Note that this implementation is not synchronized.</strong> * If multiple threads access a linked hash map concurrently, and at least * one of the threads modifies the map structurally, it <em>must</em> be * synchronized externally. This is typically accomplished by * synchronizing on some object that naturally encapsulates the map. * * If no such object exists, the map should be "wrapped" using the * {@link Collections#synchronizedMap Collections.synchronizedMap} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the map:<pre> * Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre> * * A structural modification is any operation that adds or deletes one or more * mappings or, in the case of access-ordered linked hash maps, affects * iteration order. In insertion-ordered linked hash maps, merely changing * the value associated with a key that is already contained in the map is not * a structural modification. <strong>In access-ordered linked hash maps, * merely querying the map with <tt>get</tt> is a structural * modification.</strong>) * * <p>The iterators returned by the <tt>iterator</tt> method of the collections * returned by all of this class's collection view methods are * <em>fail-fast</em>: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * <tt>remove</tt> method, the iterator will throw a {@link * ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the future. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @param <K> the type of keys maintained by this map * @param <V> the type of mapped values * * @author Josh Bloch * @see Object#hashCode() * @see Collection * @see Map * @see HashMap * @see TreeMap * @see Hashtable * @since 1.4 */ public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> { private static final long serialVersionUID = 3801124242820219131L; /** * The head of the doubly linked list. */ private transient Entry<K,V> header; /** * The iteration ordering method for this linked hash map: <tt>true</tt> * for access-order, <tt>false</tt> for insertion-order. * * @serial */ private final boolean accessOrder; /** * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance * with the specified initial capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public LinkedHashMap(int initialCapacity, float loadFactor) { super(initialCapacity, loadFactor); accessOrder = false; } /** * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance * with the specified initial capacity and a default load factor (0.75). * * @param initialCapacity the initial capacity * @throws IllegalArgumentException if the initial capacity is negative */ public LinkedHashMap(int initialCapacity) { super(initialCapacity); accessOrder = false; } /** * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance * with the default initial capacity (16) and load factor (0.75). */ public LinkedHashMap() { super(); accessOrder = false; } /** * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with * the same mappings as the specified map. The <tt>LinkedHashMap</tt> * instance is created with a default load factor (0.75) and an initial * capacity sufficient to hold the mappings in the specified map. * * @param m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public LinkedHashMap(Map<? extends K, ? extends V> m) { super(m); accessOrder = false; } /** * Constructs an empty <tt>LinkedHashMap</tt> instance with the * specified initial capacity, load factor and ordering mode. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @param accessOrder the ordering mode - <tt>true</tt> for * access-order, <tt>false</tt> for insertion-order * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.accessOrder = accessOrder; } /** * Called by superclass constructors and pseudoconstructors (clone, * readObject) before any entries are inserted into the map. Initializes * the chain. */ void init() { header = new Entry<>(-1, null, null, null); header.before = header.after = header; } /** * Transfers all entries to new table array. This method is called * by superclass resize. It is overridden for performance, as it is * faster to iterate using our linked list. */ void transfer(HashMap.Entry[] newTable) { int newCapacity = newTable.length; for (Entry<K,V> e = header.after; e != header; e = e.after) { int index = indexFor(e.hash, newCapacity); e.next = newTable[index]; newTable[index] = e; } } /** * Returns <tt>true</tt> if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested * @return <tt>true</tt> if this map maps one or more keys to the * specified value */ public boolean containsValue(Object value) { // Overridden to take advantage of faster iterator if (value==null) { for (Entry e = header.after; e != header; e = e.after) if (e.value==null) return true; } else { for (Entry e = header.after; e != header; e = e.after) if (value.equals(e.value)) return true; } return false; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * * <p>A return value of {@code null} does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. */ public V get(Object key) { Entry<K,V> e = (Entry<K,V>)getEntry(key); if (e == null) return null; e.recordAccess(this); return e.value; } /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ public void clear() { super.clear(); header.before = header.after = header; } /** * LinkedHashMap entry. */ private static class Entry<K,V> extends HashMap.Entry<K,V> { // These fields comprise the doubly linked list used for iteration. Entry<K,V> before, after; Entry(int hash, K key, V value, HashMap.Entry<K,V> next) { super(hash, key, value, next); } /** * Removes this entry from the linked list. */ private void remove() { before.after = after; after.before = before; } /** * Inserts this entry before the specified existing entry in the list. */ private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; } /** * This method is invoked by the superclass whenever the value * of a pre-existing entry is read by Map.get or modified by Map.set. * If the enclosing Map is access-ordered, it moves the entry * to the end of the list; otherwise, it does nothing. */ void recordAccess(HashMap<K,V> m) { LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; if (lm.accessOrder) { lm.modCount++; remove(); addBefore(lm.header); } } void recordRemoval(HashMap<K,V> m) { remove(); } } private abstract class LinkedHashIterator<T> implements Iterator<T> { Entry<K,V> nextEntry = header.after; Entry<K,V> lastReturned = null; /** * The modCount value that the iterator believes that the backing * List should have. If this expectation is violated, the iterator * has detected concurrent modification. */ int expectedModCount = modCount; public boolean hasNext() { return nextEntry != header; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); LinkedHashMap.this.remove(lastReturned.key); lastReturned = null; expectedModCount = modCount; } Entry<K,V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (nextEntry == header) throw new NoSuchElementException(); Entry<K,V> e = lastReturned = nextEntry; nextEntry = e.after; return e; } } private class KeyIterator extends LinkedHashIterator<K> { public K next() { return nextEntry().getKey(); } } private class ValueIterator extends LinkedHashIterator<V> { public V next() { return nextEntry().value; } } private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // These Overrides alter the behavior of superclass view iterator() methods Iterator<K> newKeyIterator() { return new KeyIterator(); } Iterator<V> newValueIterator() { return new ValueIterator(); } Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } /** * This override alters behavior of superclass put method. It causes newly * allocated entry to get inserted at the end of the linked list and * removes the eldest entry if appropriate. */ void addEntry(int hash, K key, V value, int bucketIndex) { createEntry(hash, key, value, bucketIndex); // Remove eldest entry if instructed, else grow capacity if appropriate Entry<K,V> eldest = header.after; if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); } else { if (size >= threshold) resize(2 * table.length); } } /** * This override differs from addEntry in that it doesn't resize the * table or remove the eldest entry. */ void createEntry(int hash, K key, V value, int bucketIndex) { HashMap.Entry<K,V> old = table[bucketIndex]; Entry<K,V> e = new Entry<>(hash, key, value, old); table[bucketIndex] = e; e.addBefore(header); size++; } /** * Returns <tt>true</tt> if this map should remove its eldest entry. * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after * inserting a new entry into the map. It provides the implementor * with the opportunity to remove the eldest entry each time a new one * is added. This is useful if the map represents a cache: it allows * the map to reduce memory consumption by deleting stale entries. * * <p>Sample use: this override will allow the map to grow up to 100 * entries and then delete the eldest entry each time a new entry is * added, maintaining a steady state of 100 entries. * <pre> * private static final int MAX_ENTRIES = 100; * * protected boolean removeEldestEntry(Map.Entry eldest) { * return size() > MAX_ENTRIES; * } * </pre> * * <p>This method typically does not modify the map in any way, * instead allowing the map to modify itself as directed by its * return value. It <i>is</i> permitted for this method to modify * the map directly, but if it does so, it <i>must</i> return * <tt>false</tt> (indicating that the map should not attempt any * further modification). The effects of returning <tt>true</tt> * after modifying the map from within this method are unspecified. * * <p>This implementation merely returns <tt>false</tt> (so that this * map acts like a normal map - the eldest element is never removed). * * @param eldest The least recently inserted entry in the map, or if * this is an access-ordered map, the least recently accessed * entry. This is the entry that will be removed it this * method returns <tt>true</tt>. If the map was empty prior * to the <tt>put</tt> or <tt>putAll</tt> invocation resulting * in this invocation, this will be the entry that was just * inserted; in other words, if the map contains a single * entry, the eldest entry is also the newest. * @return <tt>true</tt> if the eldest entry should be removed * from the map; <tt>false</tt> if it should be retained. */ protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { return false; } }