Problem
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Example
Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Output
15
#include<iostream> #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<vector> #include<map> #include<set> #include<queue> #include<stack> #include<string> #include<algorithm> using namespace std; typedef long long ll; #define inf 99999999 #define pi acos(-1.0) #define maxn 106 ll a[maxn][maxn],sum[maxn]; ll f(ll c[],ll n) { ll i,j; ll b[maxn]; b[0]=-inf; ll maxx=-inf; for(i=1;i<=n;i++){ b[i]=max(c[i],b[i-1]+c[i]); maxx=max(maxx,b[i]); } return maxx; } int main() { ll n,m,i,j,maxx,k; while(scanf("%lld",&n)!=EOF) { for(i=1;i<=n;i++){ for(j=1;j<=n;j++){ scanf("%lld",&a[i][j]); } } maxx=-inf; for(i=1;i<=n;i++){ memset(sum,0,sizeof(sum)); for(j=i;j<=n;j++){ for(k=1;k<=n;k++){ sum[k]+=a[j][k]; } maxx=max(maxx,f(sum,n)); } } printf("%lld\n",maxx); } return 0; }