无线局域网产品使用的SMS4密码算法
中文文档下载地址
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf
SMS4 Encryption Algorithm for Wireless Networks
英文文档下载地址
http://eprint.iacr.org/2008/329.pdf
对文档描述进行了简单的直译
有很多地方可以优化
仅实现了128-bit block的加解密
可根据具体应用结合CBC方式使用
/* * A simple implementation of SMS4 Encryption Algorithm for Wireless Networks. * * No Rights Reserved. */ #include <stdio.h> #include <string.h> #define ROTATE(a,n) (((a) << (n)) | (((a) & 0xffffffff) >> (32 - (n)))) #define SWAP32(a) ((((a) & 0xff000000) >> 24) | (((a) & 0x000000ff) << 24) \ | (((a) & 0x0000ff00) << 8) | (((a) & 0x00ff0000) >> 8)) static unsigned char Sbox[256] = { 0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7, 0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05, 0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3, 0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62, 0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95, 0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6, 0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba, 0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8, 0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b, 0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35, 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87, 0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e, 0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5, 0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1, 0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55, 0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3, 0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60, 0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f, 0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51, 0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8, 0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0, 0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84, 0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48 }; static unsigned int CK[32] = { 0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269, 0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9, 0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249, 0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9, 0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229, 0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299, 0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209, 0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279 }; static unsigned int FK[4] = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc }; /* Non-linear substitution tau */ static inline unsigned int t(unsigned int A) { unsigned int a0 = (A >> 24) & 0xff; unsigned int a1 = (A >> 16) & 0xff; unsigned int a2 = (A >> 8) & 0xff; unsigned int a3 = A & 0xff; unsigned int b0 = Sbox[a0]; unsigned int b1 = Sbox[a1]; unsigned int b2 = Sbox[a2]; unsigned int b3 = Sbox[a3]; unsigned int B = (((b0 << 24) & 0xff000000) | ((b1 << 16) & 0x00ff0000) | ((b2 << 8) & 0x0000ff00) | (b3 & 0xff)); return B; } static inline unsigned int L_ap(unsigned int B) { return (B ^ (ROTATE(B, 13)) ^ (ROTATE(B, 23))); } static inline unsigned int T_ap(unsigned int Z) { return L_ap(t(Z)); } /* Key expansion @MK : the 128bits encryption key @rk : the derived round key, return value */ static inline void key_exp(unsigned int MK[4], unsigned int rk[32]) { int i; unsigned int K[4]; K[0] = MK[0] ^ FK[0]; K[1] = MK[1] ^ FK[1]; K[2] = MK[2] ^ FK[2]; K[3] = MK[3] ^ FK[3]; rk[0] = K[0] ^ T_ap(K[1] ^ K[2] ^ K[3] ^ CK[0]); rk[1] = K[1] ^ T_ap(K[2] ^ K[3] ^ rk[0] ^ CK[1]); rk[2] = K[2] ^ T_ap(K[3] ^ rk[0] ^ rk[1] ^ CK[2]); rk[3] = K[3] ^ T_ap(rk[0] ^ rk[1] ^ rk[2] ^ CK[3]); for (i = 4; i < 32; i++) { rk[i] = rk[i - 4] ^ T_ap(rk[i - 3] ^ rk[i - 2] ^ rk[i - 1] ^ CK[i]); } } /* Linear substitution L */ static inline unsigned int L(unsigned int B) { unsigned int C; C = (B ^ (ROTATE(B, 2)) ^ (ROTATE(B, 10)) ^ (ROTATE(B, 18)) ^ (ROTATE(B, 24))); return C; } /* Mixer-substitution T */ static inline unsigned int T(unsigned int Z) { return L(t(Z)); } /* reverse substitution */ static inline void R(unsigned int A[4]) { A[0] = A[0] ^ A[3]; A[3] = A[0] ^ A[3]; A[0] = A[0] ^ A[3]; A[1] = A[1] ^ A[2]; A[2] = A[1] ^ A[2]; A[1] = A[1] ^ A[2]; } /* The round function */ static inline unsigned int F(unsigned int X[4], unsigned int rk) { return (X[0] ^ T(X[1] ^ X[2] ^ X[3] ^ rk)); } /* Encryption and decryption */ static inline void __sms4(unsigned int X[4], unsigned int rk[32], unsigned int Y[4], int encrypt) { int i; unsigned int tmp[36]; tmp[0] = X[0]; tmp[1] = X[1]; tmp[2] = X[2]; tmp[3] = X[3]; for (i = 0; i < 32; i++) { if (encrypt) { tmp[i + 4] = F(tmp + i, rk[i]); } else { tmp[i + 4] = F(tmp + i, rk[31 - i]); } //printf("rk[%2d] = %08x\t", i, rk[i]); //printf("X[%2d] = %08x\n", i, tmp[i + 4]); } R(tmp + 32); Y[0] = tmp[32]; Y[1] = tmp[33]; Y[2] = tmp[34]; Y[3] = tmp[35]; } static inline void _sms4(unsigned int X[4], unsigned int MK[4], unsigned int Y[4], int encrypt) { unsigned int rk[32]; key_exp(MK, rk); __sms4(X, rk, Y, encrypt); } static inline void sms4(unsigned char *plain, unsigned char *key, unsigned char *cipher, int encrypt) { unsigned int *p = (unsigned int *)plain; unsigned int *k = (unsigned int *)key; unsigned int *c = (unsigned int *)cipher; unsigned int X[4]; unsigned int MK[4]; unsigned int Y[4]; MK[0] = SWAP32(k[0]); MK[1] = SWAP32(k[1]); MK[2] = SWAP32(k[2]); MK[3] = SWAP32(k[3]); X[0] = SWAP32(p[0]); X[1] = SWAP32(p[1]); X[2] = SWAP32(p[2]); X[3] = SWAP32(p[3]); _sms4(X, MK, Y, encrypt); c[0] = SWAP32(Y[0]); c[1] = SWAP32(Y[1]); c[2] = SWAP32(Y[2]); c[3] = SWAP32(Y[3]); } /* @plain : 128-bit block @key : 128-bit block @cipher : 128-bit block */ void sms4_encrypt(unsigned char *plain, unsigned char *key, unsigned char *cipher) { sms4(plain, key, cipher, 1); } /* @plain : 128-bit block @key : 128-bit block @cipher : 128-bit block */ void sms4_decrypt(unsigned char *cipher, unsigned char *key, unsigned char *plain) { sms4(cipher, key, plain, 0); } void test1(void) { unsigned char plain[16] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10}; unsigned char key[16] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10}; unsigned char cipher[16] = {0x68, 0x1e, 0xdf, 0x34, 0xd2, 0x06, 0x96, 0x5e, 0x86, 0xb3, 0xe9, 0x4f, 0x53, 0x6e, 0x42, 0x46}; unsigned char buf[16]; int i; sms4_encrypt(plain, key, buf); for (i = 0; i < 16; i++) { printf("0x%02x ", buf[i]); } printf("\n"); if (memcmp(cipher, buf, 16)) { printf("1 error\n"); } sms4_decrypt(cipher, key, buf); for (i = 0; i < 16; i++) { printf("0x%02x ", buf[i]); } printf("\n"); } void test1000000(void) { unsigned char plain[16] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10}; unsigned char key[16] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10}; unsigned char cipher[16] = {0x59, 0x52, 0x98, 0xc7, 0xc6, 0xfd, 0x27, 0x1f, 0x04, 0x02, 0xf8, 0x04, 0xc3, 0x3d, 0x3f, 0x66}; unsigned char buf[16]; int i; memcpy(buf, plain, 16); for (i = 0; i < 1000000; i++) { sms4_encrypt(buf, key, buf); } for (i = 0; i < 16; i++) { printf("0x%02x ", buf[i]); } printf("\n"); if (memcmp(cipher, buf, 16)) { printf("1000000 error\n"); } memcpy(buf, cipher, 16); for (i = 0; i < 1000000; i++) { sms4_decrypt(buf, key, buf); } for (i = 0; i < 16; i++) { printf("0x%02x ", buf[i]); } printf("\n"); } int main(void) { test1(); test1000000(); return 0; }