http://poj.org/problem?id=2400
Description
Input
Output
Sample Input
2 7 1 2 3 4 5 6 7 2 1 3 4 5 6 7 3 1 2 4 5 6 7 4 1 2 3 5 6 7 5 1 2 3 4 6 7 6 1 2 3 4 5 7 7 1 2 3 4 5 6 1 2 3 4 5 6 7 2 1 3 4 5 6 7 3 1 2 4 5 6 7 4 1 2 3 5 6 7 5 1 2 3 4 6 7 6 1 2 3 4 5 7 7 1 2 3 4 5 6 2 1 2 2 1 1 2 1 2
Sample Output
Data Set 1, Best average difference: 0.000000 Best Pairing 1 Supervisor 1 with Employee 1 Supervisor 2 with Employee 2 Supervisor 3 with Employee 3 Supervisor 4 with Employee 4 Supervisor 5 with Employee 5 Supervisor 6 with Employee 6 Supervisor 7 with Employee 7 Data Set 2, Best average difference: 0.250000 Best Pairing 1 Supervisor 1 with Employee 1 Supervisor 2 with Employee 2http://blog.csdn.net/wangjian8006/article/details/7950005
/************************************************************************* ************************************************************************** KM算法模板C++ 作用: 求二分图的最佳匹配 注意: (1)for (i:1~n)for (j:1~n)scanf (w[i][j]); w[i][j],表示左边第i点匹配右边第j点的价值。i,j:从1开始。 主函数调用:ans=KM(); ans的值即为所求。 (2)所求为最大完备匹配,若是求最小,则把边的权值取相反数,跑一遍模板, 最后结果再取相反数即可。 ************************************************************************** *************************************************************************/ #include <stdio.h> #include <string.h> #define M 16 #define inf 0x3f3f3f3f int n,nx,ny,sum,cost; int link[M],lx[M],ly[M],slack[M];///lx,ly为顶标,nx,ny分别为x点集y点集的个数 int visx[M],visy[M],w[M][M],mark[M]; int DFS(int x) { visx[x] = 1; for (int y = 1; y <= ny; y ++) { if (visy[y]) continue; int t = lx[x] + ly[y] - w[x][y]; if (t == 0) { visy[y] = 1; if (link[y] == -1||DFS(link[y])) { link[y] = x; return 1; } } else if (slack[y] > t) ///不在相等子图中slack 取最小的 slack[y] = t; } return 0; } int KM() { int i,j; memset (link,-1,sizeof(link)); memset (ly,0,sizeof(ly)); for (i = 1; i <= nx; i ++) ///lx初始化为与它关联边中最大的 for (j = 1,lx[i] = -inf; j <= ny; j ++) if (w[i][j] > lx[i]) lx[i] = w[i][j]; for (int x = 1; x <= nx; x ++) { for (i = 1; i <= ny; i ++) slack[i] = inf; while (1) { memset (visx,0,sizeof(visx)); memset (visy,0,sizeof(visy)); if (DFS(x)) ///若成功(找到了增广轨),则该点增广完成,进入下一个点的增广 break; ///若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。 ///方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d, ///所有在增广轨中的Y方点的标号全部加上一个常数d int d = inf; for (i = 1; i <= ny; i ++) if (!visy[i]&&d > slack[i]) d = slack[i]; for (i = 1; i <= nx; i ++) if (visx[i]) lx[i] -= d; for (i = 1; i <= ny; i ++) ///修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d if (visy[i]) ly[i] += d; else slack[i] -= d; } } int res = 0; for (i = 1; i <= ny; i ++) if (link[i] > -1) res += w[link[i]][i]; return -res; } void dfs(int cap,int x)///全排列搜索找出所有答案 { if(x<-cost) return; /// printf("**\n"); if(cap>n) { if(x!=-cost)return; printf("Best Pairing %d\n",++sum); for(int i=1;i<=n;i++) printf("Supervisor %d with Employee %d\n",i,link[i]); } else { for(int i=1;i<=n;i++) { if(!mark[i]) { mark[i]=1; link[cap]=i; dfs(cap+1,x+w[cap][i]); mark[i]=0; } } } } int main() { int T,tt=0; scanf("%d",&T); while(T--) { memset(w,0,sizeof(w)); scanf("%d",&n); nx=ny=n; for(int i=1;i<=n;i++) { for(int j=0;j<n;j++) { int x; scanf("%d",&x); w[x][i]-=j; } } for(int i=1;i<=n;i++) { for(int j=0;j<n;j++) { int x; scanf("%d",&x); w[i][x]-=j; } } /**for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { printf("%d ",w[i][j]); } printf("\n"); } */ cost=KM(); printf("Data Set %d, Best average difference: %.6lf\n",++tt,0.5*cost/n); sum=0; memset(mark,0,sizeof(mark)); dfs(1,0); printf("\n"); } return 0; }