Check the difficulty of problems
http://poj.org/problem?id=2151
Time Limit: 2000MS |
|
Memory Limit: 65536K |
|
|
|
Description
Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.
Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
Input
The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.
Output
For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.
Sample Input
2 2 2
0.9 0.9
1 0.9
0 0 0
Sample Output
0.972
题目大意:有t只队伍,m道题,求所有队伍都至少做出一题,并且存在队伍做出的题数大于等于n的概率?
可以用dp求得每支队伍做出k道题的概率
设dp[i][j][k]表示第i只队伍在前j题中做出k题的概率
则状态转移方程为:dp[i][j][k]=(1-p[i][j])*dp[i][j-1][k]+p[i][j]*dp[i][j-1][k-1];
总是想着正面求解,而忘了正难则反的原理
首先统计每个人至少做出一题的概率:prob_1=1-∏dp[i][m][0];
再统计每个人做出的题目数目均在1~n-1之间的概率:prob_2=∏(∑dp[i][m][k])
则满足题意的概率为:prob_1-prob_2
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
const int MAXN=35;
const double EPS=0.000001;
int m,t,n;
double dp[1005][MAXN][MAXN];//dp[i][j][k]表示第i只队伍在前j题中做出k题的概率
double p[1005][MAXN],prob_1,prob_2;
int main() {
while(scanf("%d%d%d",&m,&t,&n),m!=0||t!=0||n!=0) {
for(int i=1;i<=t;++i) {
for(int j=1;j<=m;++j) {
scanf("%lf",&p[i][j]);
}
}
for(int i=1;i<=t;++i) {
dp[i][0][0]=1;
for(int j=1;j<=m;++j) {
dp[i][j][0]=(1-p[i][j])*dp[i][j-1][0];
}//初始化第i支队伍的概率
for(int j=1;j<=m;++j) {
dp[i][j-1][j]=0;
for(int k=1;k<=j;++k) {
dp[i][j][k]=(1-p[i][j])*dp[i][j-1][k]+p[i][j]*dp[i][j-1][k-1];
}
}
}
prob_1=prob_2=1;
for(int i=1;i<=t;++i) {
prob_1*=(1-dp[i][m][0]);
double sum=0;
for(int j=1;j<n;++j) {//统计第i队做出1~n-1道题的概率和
sum+=dp[i][m][j];
}
prob_2*=sum;
}
printf("%.3lf\n",prob_1-prob_2);
}
return 0;
}