Given the Cartesian coordinates of n(>0)2-dimensional points, write a program that computes the area of their smallest bounding rectangle (smallest rectangle containing all the given points).
The input le may contain multiple test cases. Each test case begins with a line containing a positive
integer n(<1001) indicating the number of points in this test case. Then follows n lines each containing
two real numbers giving respectively the x - and y
-coordinates of a point. The input terminates with a
test case containing a value 0 for n which must not be processed.
For each test case in the input print a line containing the area of the smallest bounding rectangle
rounded to the 4th digit after the decimal point.
3
-3.000 5.000
7.000 9.000
17.000 5.000
4
10.000 10.000
10.000 20.000
20.000 20.000
20.000 10.000
0
80.0000
100.0000
最小外接矩形,不会简单的方法,只能将所给点构成凸包,然后枚举凸包上相邻的两点与x轴的夹角作为矩形的倾斜角c,然后求出沿倾斜角c的方向上的凸包映射的长度和垂直倾斜角c的方向上的映射长度为矩形的长和宽.
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include <vector>
#include <map>
#include <algorithm>
#define LL long long
using namespace std;
const int INF = 0x3f3f3f3f;
const int Max = 1011;
const double eps = 1e-8;
const double Pi = acos(-1.0);
int sgn(double x)//精度处理
{
if(fabs(x)<eps)
{
return 0;
}
if(x<0)
{
return -1;
}
else
{
return 1;
}
}
struct Point
{
double x,y;
Point() {};
Point(double _x,double _y)
{
x=_x;
y=_y;
}
Point operator - (const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^ (const Point &b)const
{
return x*b.y-y*b.x;
}
double operator * (const Point &b)const
{
return x*b.x+y*b.y;
}
void transXY(double B)
{
double tx = x,ty=y;
x =tx*cos(B)-ty*sin(B);
y = tx*sin(B)+ty*cos(B);
}
} List[Max];
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
int Stack[Max],top;
bool _cmp(Point p1,Point p2)//极角排序
{
double tmp = (p1-List[0])^(p2-List[0]);
if(sgn(tmp)>0)
{
return true;
}
else if(sgn(tmp)==0 && sgn(dist(p1,List[0])-dist(p2,List[0]))<=0)
{
return true;
}
else
{
return false;
}
}
void Graham(int n)//凸包
{
Point p0;
int k = 0;
p0=List[0];
for(int i=1; i<n; i++)
{
if((p0.y>List[i].y)||(p0.y==List[i].y&&p0.x>List[i].x))
{
p0=List[i];
k=i;
}
}
swap(List[k],List[0]);
sort(List+1,List+n,_cmp);
if(n==1)
{
top=1;
Stack[0]=0;
return ;
}
if(n==2)
{
top= 2 ;
Stack[0]=0;
Stack[1]=1;
return ;
}
Stack[0]= 0 ;
Stack[1]=1;
top=2;
for(int i=2; i<n; i++)
{
while(top>1&&sgn((List[Stack[top-1]]-List[Stack[top-2]])^(List[i]-List[Stack[top-2]]))<=0)
top--;
Stack[top++]=i;
}
}
double Get(int n)//计算矩形的最小面积
{
double ant,ans ,dis ;
double x,y;
double sum = INF;
Point a;
for(int i=0; i<n; i++)
{
a=List[Stack[(i+1)%n]]-List[Stack[i]];
ant = atan2(a.y,a.x);//倾斜角
x = 0;
y = 0;
for(int j=0; j<n; j++)
{
a=List[Stack[(j+1)%n]]-List[Stack[j]];
dis =sqrt(a.x*a.x+a.y*a.y);
ans = atan2(a.y,a.x);
x+=fabs(dis*sin(ans-ant));//映射总和
y+=fabs(dis*cos(ans-ant));//映射总和
}
sum = min(x*y,sum);
}
return sum/4;
}
int main()
{
int n;
while(scanf("%d",&n)&&n)
{
top = 0;
for(int i=0; i<n; i++)
{
scanf("%lf %lf",&List[i].x,&List[i].y);
}
Graham(n);
printf("%.4f\n",Get(top));
}
return 0;
}