Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [ [3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5] ] sumRegion(2, 1, 4, 3) -> 8 sumRegion(1, 1, 2, 2) -> 11 sumRegion(1, 2, 2, 4) -> 12
Note:
class NumMatrix { public: NumMatrix(vector<vector<int>> &matrix) { if (matrix.empty()) return; //求得二维矩阵的行列 int m = matrix.size(), n = matrix[0].size(); sums = vector<vector<int>>(m+1, vector<int>(n+1, 0)); sums[0][0] = matrix[0][0]; for (int j = 1; j <= n; ++j) { sums[0][j] = 0; } for (int i = 1; i <= m; ++i) { sums[i][0] = 0; } // for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { sums[i][j] = sums[i][j - 1] + sums[i - 1][j] - sums[i - 1][j - 1] + matrix[i-1][j-1]; }//for }//for } int sumRegion(int row1, int col1, int row2, int col2) { int m = sums.size(), n = sums[0].size(); if (row1 < 0 || row1 >= m || col1 < 0 || col1 >= n || row2<0 || row2 >= m || col2<0 || col2 >= n || row1 >row2 || col1 > col2) { return 0; } return sums[row2+1][col2+1] - sums[row2+1][col1] - sums[row1][col2+1] + sums[row1][col1]; } private: vector<vector<int>> sums; };