MongoDB的3.x版本Java驱动相对2.x做了全新的设计,类库和使用方法上有很大区别。例如用Document替换BasicDBObject、通过Builders类构建Bson替代直接输入$命令等,本文整理了基于3.2版本的常用增删改查操作的使用方法。为了避免冗长的篇幅,分为增删改、查询、聚合、地理索引等几部分。
聚合用于统计文档个数、求和、最大最小值、求平均值等,功能和函数名称和SQL中的count、distinct、group等关键字非常类似,此外,还可以通过javascript编写MapReduce实现复杂的计算(性能损耗也会非常严重)。
首先来看3.x驱动中的聚合方法的声明:
AggregateIterable<TDocument> aggregate(List<? extends Bson> pipeline)
参数类型是一个Bson的列表,而参数名称是pipeline,其构建方式正如其名,是以多个Bson建立起一条管道,前一个Bson的输出将作为后一个Bson的输入,例如:
mc.aggregate(Arrays.asList(match(eq("owner", "tom")), group("$author", sum("totalWords", "$words"))));
首先用$match查找出owner=tom的文档,并将结果集传递给$group并对字数求和。
下面来看更多命令用法,用于演示的类的基本代码如下
import static com.mongodb.client.model.Accumulators.*; import static com.mongodb.client.model.Aggregates.*; import static com.mongodb.client.model.Filters.eq; import java.text.ParseException; import java.util.Arrays; import org.bson.Document; import com.mongodb.Block; import com.mongodb.MongoClient; import com.mongodb.client.AggregateIterable; import com.mongodb.client.MongoCollection; import com.mongodb.client.MongoDatabase; public class AggregatesExamples { public static void main(String[] args) throws ParseException { //根据实际环境修改ip和端口 MongoClient mongoClient = new MongoClient("localhost", 27017); MongoDatabase database = mongoClient.getDatabase("lesson"); AggregatesExamples client = new AggregatesExamples(database); client.show(); mongoClient.close(); } private MongoDatabase database; public AggregatesExamples(MongoDatabase database) { this.database = database; } public void show() { MongoCollection<Document> mc = database.getCollection("blog"); //每次执行前清空集合以方便重复运行 mc.drop(); //插入用于测试的文档 Document doc1 = new Document("title", "good day").append("owner", "tom").append("words", 300) .append("comments", Arrays.asList(new Document("author", "joe").append("score", 3).append("comment", "good"), new Document("author", "white").append("score", 1).append("comment", "oh no"))); Document doc2 = new Document("title", "good").append("owner", "john").append("words", 400) .append("comments", Arrays.asList(new Document("author", "william").append("score", 4).append("comment", "good"), new Document("author", "white").append("score", 6).append("comment", "very good"))); Document doc3 = new Document("title", "good night").append("owner", "mike").append("words", 200) .append("tag", Arrays.asList(1, 2, 3, 4)); Document doc4 = new Document("title", "happiness").append("owner", "tom").append("words", 1480) .append("tag", Arrays.asList(2, 3, 4)); Document doc5 = new Document("title", "a good thing").append("owner", "tom").append("words", 180) .append("tag", Arrays.asList(1, 2, 3, 4, 5)); mc.insertMany(Arrays.asList(doc1, doc2, doc3, doc4, doc5)); AggregateIterable<Document> iterable = mc.aggregate(Arrays.asList(match(eq("owner", "tom")), group("$author", sum("totalWords", "$words")))); printResult("", iterable); //TODO: 将在这里填充更多聚合示例 } //打印聚合结果 public void printResult(String doing, AggregateIterable<Document> iterable) { System.out.println(doing); iterable.forEach(new Block<Document>() { public void apply(final Document document) { System.out.println(document); } }); System.out.println("------------------------------------------------------"); System.out.println(); } }
如上面代码所示,将把所有的聚合操作集中在show()方法中演示,并且在执行后打印结果集以观察执行结果。下面用常用的聚合代码填充show()方法
// $match 确定复合条件的文档, 可组合多个条件 iterable = mc.aggregate(Arrays.asList(match(and(eq("owner", "tom"), gt("words", 300))))); printResult("$match only", iterable); // $sum求和 $avg平均值 $max最大值 $min最小值 iterable = mc.aggregate(Arrays.asList( match(in("owner", "tom", "john", "mike")), group("$owner", sum("totalWords", "$words"), avg("averageWords", "$words"), max("maxWords", "$words"), min("minWords", "$words")))); printResult("$sum $avg $max $min", iterable); // $out 把聚合结果输出到集合 mc.aggregate(Arrays.asList( match(in("owner", "tom", "john", "mike")), group("$owner", sum("totalWords", "$words"), avg("averageWords", "$words"), max("maxWords", "$words"), min("minWords", "$words")), out("wordsCount"))); iterable = database.getCollection("wordsCount").aggregate( Arrays.asList(sample(3))); printResult("$out", iterable); // 随机取3个文档, 仅返回title和owner字段 iterable = mc.aggregate(Arrays.asList(sample(3), project(fields(include("title", "owner"), excludeId())))); printResult("sample(3)", iterable); // 从第2个文档开始取2个文档, 仅返回title和owner字段 iterable = mc.aggregate(Arrays.asList(skip(1), limit(2), project(fields(include("title", "owner"), excludeId())))); printResult("skip(1), limit(2)", iterable); // $lookup 和另一个集合关联 database.getCollection("scores").drop(); database.getCollection("scores").insertMany( Arrays.asList( new Document("writer", "tom").append("score", 100), new Document("writer", "joe").append("score", 95), new Document("writer", "john").append("score", 80))); iterable = mc.aggregate(Arrays.asList(lookup("scores", "owner", "writer", "joinedOutput"))); printResult("lookup", iterable); // 拆分comments为单个文档 iterable = mc.aggregate(Arrays.asList(match(size("comments", 2)), project(fields(include("comments"), excludeId())), unwind("$comments"))); printResult("unwind comments", iterable); System.out.println("distinct"); DistinctIterable<String> di = mc.distinct("owner", String.class); di.forEach(new Block<String>() { public void apply(final String str) { System.out.println(str); } }); System.out.println("------------------------------------------------------"); System.out.println(); System.out.println("count"); long count = mc.count(Filters.eq("owner", "tom")); System.out.println("count=" + count); System.out.println("------------------------------------------------------"); System.out.println(); System.out.println("mapreduce"); String map = "function() { var category; " + "if ( this.words >= 280 ) category = 'Long blogs'; " + "else category = 'Short blogs'; " + "emit(category, {title: this.title});}"; String reduce = "function(key, values) { var cnt = 0; " + "values.forEach(function(doc) { cnt += 1; }); " + "return {count: cnt};} "; MapReduceIterable<Document> mi = mc.mapReduce(map, reduce); mi.forEach(new Block<Document>() { public void apply(final Document str) { System.out.println(str); } }); System.out.println("------------------------------------------------------"); System.out.println();(完)