Largest Rectangle in Histogram

Given n non-negative integers representing the histogram’s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Largest Rectangle in Histogram_第1张图片

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
Largest Rectangle in Histogram_第2张图片

The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,
Given heights = [2,1,5,6,2,3],
return 10.

这个题暴力解法肯定是超时。

化繁为简
先假设后面的都比前面的大,如下图,那就容易计算了。
Largest Rectangle in Histogram_第3张图片
但是如果碰到前面比后面大的情况,就可以先将和前面比它大的全部都比较一遍,然后放入栈中,直到栈里的所有元素都是递增的。

代码如下:

public int largestRectangleArea(int[] height) {  
    int area = 0;  
    java.util.Stack<Integer> heightStack = new java.util.Stack<Integer>();  
    java.util.Stack<Integer> indexStack = new java.util.Stack<Integer>();  
    for (int i = 0; i < height.length; i++) {  
        if (heightStack.empty() || heightStack.peek() <= height[i]) {  
            heightStack.push(height[i]);  
            indexStack.push(i);  
        }
        else if(heightStack.peek() > height[i]) { 
            int j = 0;  
            while (!heightStack.empty() && heightStack.peek() > height[i]) {  
                j = indexStack.pop();  
                int currArea = (i - j) * heightStack.pop();  
                if (currArea > area) {  
                    area = currArea;  
                }  
            }  
            heightStack.push(height[i]);  
            indexStack.push(j);  
        }  
     }
     while (!heightStack.empty()) {  
         int currArea = (height.length - indexStack.pop()) * heightStack.pop();  
         if (currArea > area) {  
             area = currArea;  
         }  
     }  
     return area;  
    } 

如果我们遇到这道题的时候,一开始应该想想特例,比如递增序列下的最大矩形面积,然后发散开来,想想一般情况和这种递增情况的关系,也许就能有突破。使用类似的”从特例到一般”的发散方式还有Candy (分糖果)的第二种解法。

你可能感兴趣的:(java,stack)