- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- Spark SQL架构及高级用法
Aurora_NeAr
sparksql架构
SparkSQL架构概述架构核心组件API层(用户接口)输入方式:SQL查询;DataFrame/DatasetAPI。统一性:所有接口最终转换为逻辑计划树(LogicalPlan),进入优化流程。编译器层(Catalyst优化器)核心引擎:基于规则的优化器(Rule-BasedOptimizer,RBO)与成本优化器(Cost-BasedOptimizer,CBO)。处理流程:阶段输入输出关键动
- native.js设置可缩放的webview并隐藏缩放控件
Nanayai
需求明确:webview页面可以手指缩放,并且不要那个原生控件;实现思路:1.使用h5+封装好的方法:设置scalable属性,并在html中设置meta标签:user-scalable=yes或不设置,minimum-scale和maximum-scale需要注意不要都设为1:mui.openWindow({url:"someThing",id:"someThing",styles:{scala
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- 全面对比,深度解析 Ignite 与 Spark
xaio7biancheng
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- ignite redis_全面对比,深度解析 Ignite 与 Spark
weixin_39997696
igniteredis
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- zookeeper和hadoop
zookeeper操作连接zkCli.sh-server服务名称查看客户端指令helpZooKeeper-serverhost:portcmdargs statpath[watch] setpathdata[version] lspath[watch] delquota[-n|-b]path ls2path[watch] setAclpathacl setquot
- Hadoop 之 ZooKeeper (一)
devalone
HadoopHadoopZooKeeperHbaseChubbyznode
Hadoop之ZooKeeper本文介绍使用Hadoop的分布式协调服务构建通用的分布式应用——ZooKeeper。ZooKeeper是Hadoop分布式协调服务。写分布式应用是比较难的,主要是因为部分失败(partialfailure).当一条消息通过网络在两个节点间发送时,如果发生网络错误,发送者无法知道接受者是否接收到了这条消息。接收者可能在发生网络错误之前已经收到了这条消息,也可能没有收到
- ZooKeeper在Hadoop中的协同应用:从NameNode选主到分布式锁实现
码字的字节
hadoop布道师分布式zookeeperhadoop分布式锁
Hadoop与ZooKeeper概述Hadoop与ZooKeeper在大数据生态系统中的核心位置和交互关系Hadoop的架构与核心组件作为大数据处理的基石,Hadoop生态系统由多个关键组件构成。其核心架构主要包含HDFS(HadoopDistributedFileSystem)和YARN(YetAnotherResourceNegotiator)两大模块。HDFS采用主从架构设计,由NameNo
- Flink window 源码分析4:WindowState
北_鱼
Flinkflink大数据bigdata
Flinkwindow源码分析1:窗口整体执行流程Flinkwindow源码分析2:Window的主要组件Flinkwindow源码分析3:WindowOperatorFlinkwindow源码分析4:WindowState本文分析的源码为flink1.18.0_scala2.12版本。reduce、aggregate等函数中怎么使用WindowState?主要考虑reduce、aggregate
- synchronized锁升级过程【AI笔记,仅供自己参考】
在Java中,synchronized是一种内置的同步机制,用于保证多线程环境下代码的原子性、可见性和有序性。从JDK1.6开始,为了减少锁带来的性能开销,Java对synchronized做了大量优化,引入了锁升级机制(LockEscalation)。一、什么是锁升级?锁升级是指JVM在运行时根据对象的使用情况,对对象的锁状态进行动态优化的过程。它不是“升级为更重的锁”,而是从轻量级锁逐步升级到
- 大数据开发系列(六)----Hive3.0.0安装配置以及Mysql5.7安装配置
Xiaoyeforever
hivemysqlhivehadoop数据库
一、Hive3.0.0安装配置:(Hive3.1.2有BUG)hadoop3.1.2Hive各个版本下载地址:http://archive.apache.org/dist/hive/,这里我们下载hive3.0.01、解压:tar-xzvfapache-hive-3.0.0-bin.tar.gz-C/usr/lib/JDK_2021cd/usr/lib/JDK_20212.改名称.将解压以后的文件
- 数据写入因为汉字引发的异常
qq_40841339
sparkhadoophivehivehadoop数据仓库
spark数据写hive表,发生查询分区异常问题异常:251071241926.49ERRORHive:MelaException(message.Exceptionthrownwhenexeculingquey.SELECTDISTINCT‘orgapache.hadop.hivemelastore.modelMpartionAs"NUCLEUSTYPE,AONCREATETIME,AO.LAS
- 大数据编程基础
芝麻开门-新的起点
大数据大数据
3.1Java基础(重点)内容讲解Java是大数据领域最重要的编程语言之一。Hadoop、HBase、Elasticsearch等众多核心框架都是用Java开发的。因此,扎实的Java基础对于深入理解这些框架的底层原理和进行二次开发至关重要。为什么Java在大数据领域如此重要?生态系统:Hadoop生态系统原生就是Java构建的,使用Java进行开发可以无缝集成。跨平台性:Java的“一次编译,到
- 语言合成模型Spark-TTS-0.5B学习笔记
tutgxuzyj
spark学习笔记
语言合成模型Spark-TTS-0.5B学习笔记语言合成是通过计算机技术将文字信息转换为自然流畅的语音输出,模拟人类语音。一、下载Spark-TTS-0.5B项目下载链接:https://github.com/SparkAudio/Spark-TTS.git注:需要科学网络。进入Spark-TTS文件夹,启动命令行窗口。创建Conda环境:condacreate-nsparktts-ypython
- Spark-TTS 使用
时间自由
AI人工智能
1.开发背景上一章节使用了MegaTTS3实现文本转语音,但是后面才发现只能使用官方的语言包,没看到克隆功能,所以重新找了一个可以克隆语音的开源模型。2.开发需求在Ubuntu下实现Spark-TTS的部署,实现官方语音克隆,根据自定义文本输出语音。3.开发环境Ubuntu20.04+Conda+Spark-TTS+RTX5060TI4.实现步骤4.1安装环境#创建环境python版本建议3.10
- 深入解析HBase如何保证强一致性:WAL日志与MVCC机制
码字的字节
hadoop布道师hadoopHBaseWALMVCC
HBase强一致性的重要性在分布式数据库系统中,强一致性是确保数据可靠性和系统可信度的核心支柱。作为Hadoop生态系统中关键的列式存储数据库,HBase需要处理金融交易、实时风控等高敏感场景下的海量数据操作,这使得强一致性成为其设计架构中不可妥协的基础特性。分布式环境下的数据一致性挑战在典型的HBase部署环境中,数据被分散存储在多个RegionServer节点上,同时面临以下核心挑战:1.跨节
- Hadoop中MapReduce和Yarn相关内容详解
接上一章写的HDFS说,Hadoop是一个适合海量数据的分布式存储和分布式计算的一个平台,上一章介绍了分布式存储,这一章介绍一下分布式计算——MapReduce。一、MapReduce设计理念map——>映射Reduce——>归纳mapreduce是一种必须构建在hadoop之上的大数据离线计算框架。因为mapreduce是给予磁盘IO来计算存储文件的,所以它具有一定的延时性,因此一般用来处理离线
- 阿里云MaxCompute SQL与Apache Hive区别面面观
大模型大数据攻城狮
阿里云odpssql物化maxcomputeudf开发sql语法
目录1.引爆开场:MaxCompute和Hive,谁才是大数据SQL的王者?2.架构大比拼:从Hadoop到Serverless的进化之路Hive的架构:老派但经典MaxCompute的架构:云原生新贵3.SQL语法的微妙差异:90%相似,10%决定胜负建表语句分区与分桶函数与UDF4.执行引擎的较量:MapReducevs飞天引擎Hive的MapReduce执行流程MaxCompute的飞天引擎
- 一文说清楚Hive
Hive作为ApacheHadoop生态的核心数据仓库工具,其设计初衷是为熟悉SQL的用户提供大规模数据离线处理能力。以下从底层计算框架、优点、场景、注意事项及实践案例五个维度展开说明。一、Hive底层分布式计算框架对比Hive本身不直接执行计算,而是将HQL转换为底层计算引擎的任务。目前支持的主流引擎及其特点如下:计算引擎核心原理优点缺点适用场景MapReduce基于“Map→Shuffle→R
- HBase 简介
HBase简介什么是HBaseApacheHBase是Hadoop数据库,一个分布式的、可伸缩的大数据存储。当您需要对大数据进行随机的、实时的读/写访问时,请使用ApacheHBase。这个项目的目标是在商品硬件的集群上托管非常大的表——数十亿行百万列的列。ApacheHBase是一个开源的、分布式的、版本化的、非关系的数据库,它模仿了Google的Bigtable:一个结构化数据的分布式存储系统
- Spark 的监控和性能调优高度依赖其内置的工具:【 Spark Web UI 和 Spark History Server】
csdn_tom_168
大数据spark大数据核心监控性能调优工具
Spark的监控和性能调优高度依赖其内置的SparkWebUI和SparkHistoryServer。它们是诊断作业性能瓶颈、资源利用率、错误原因和优化机会的最重要工具。一、SparkWebUI(DriverWebUI)当一个Spark应用程序(SparkContext)运行时,Driver进程会启动一个Web服务器,默认端口是4040(如果4040被占用,则尝试4041,4042等)。这是实时监
- sqoop的几个注意参数
yayooo
vimsqoop_export.shsqoop导出脚本:#!/bin/bashdb_name=gmallexport_data(){/opt/module/sqoop/bin/sqoopexport\--connect"jdbc:mysql://hadoop102:3306/${db_name}?useUnicode=true&characterEncoding=utf-8"\--username
- 黑猴子的家:Spark RDD 编程进阶 之 广播变量
黑猴子的家
广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个Spark操作使用。比如,如果你的应用需要向所有节点发送一个较大的只读查询表,甚至是机器学习算法中的一个很大的特征向量,广播变量用起来都很顺手。传统方式下,Spark会自动把闭包中所有引用到的变量发送到工作节点上。虽然这很方便,但也很低效。原因有二:首先,默认的任务发射机制是专门为小任务进行优化的;其次,事实上你可能
- 大数据领域Hadoop集群搭建的详细步骤
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶大数据hadoop分布式ai
大数据领域Hadoop集群搭建的详细步骤关键词:Hadoop集群、HDFS、YARN、大数据平台、分布式系统、集群配置、故障排查摘要:Hadoop作为大数据领域的基石框架,其集群搭建是数据工程师和运维人员的核心技能。本文从Hadoop核心架构出发,结合生产环境实践,详细讲解从环境准备、配置文件调优到集群启动验证的全流程,并涵盖常见问题排查与最佳实践。无论你是初学者还是需要优化现有集群的工程师,本文
- 开源项目ESP-SparkBot: ESP32-S3 大模型 AI 桌面机器人(复刻分享)
Qsm_lambda
机器人aiAI编程
一、前言ESP-SparkBot是官方大佬,乐鑫小铁匠开源在立创开源硬件平台的项目,此贴是用于分享与记录复刻过程。开源地址:(ESP-SparkBot-立创开源硬件平台(oshwhub.com))千人讨论Q群362367052二、项目简介ESP-SparkBot是⼀款基于ESP32-S3,集成语⾳交互、图像识别、遥控操作和多媒体功能于⼀体的智能设备。它不仅可以通过语⾳助⼿实现
- Zookeeper简单入门
灬哆啦A梦不吃鱼
zookeeper简介ZooKeeper(动物园管理员),顾名思义,是用来管理Hadoop(大象)、Hive(蜜蜂)、Pig(小猪)的管理员,同时ApacheHBase、ApacheSolr、LinkedInSensei等众多项目中都采用了ZooKeeper。ZooKeeper曾是Hadoop的正式子项目,后发展成为Apache顶级项目,与Hadoop密切相关但却没有任何依赖。它是一个针对大型应用
- 数据科学与大数据技术专业的核心课程体系及发展路径全解析
YangYang9YangYan
大数据
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、课程体系三维地图二、核心课程能力矩阵课程模块关键技能行业应用场景工具链分布式计算Spark调优用户行为日志分析AWSEMR/Databricks数据挖掘特征工程金融反欺诈模型Scikit-learn实时数据处理Flink窗口计算物联网设备监控Kafka+Flink数据治理元数据管理企业
- SpringBoot与ApacheSpark、MyBatis实战整合
KENYCHEN奉孝
spring实站大全java开发语言mybatisspring
基于SpringBoot和ApacheSpark开发的实例以下是基于SpringBoot和ApacheSpark整合开发的实用示例分类及关键点,涵盖数据处理、机器学习、实时分析等场景。每个示例均提供核心思路和代码片段(Markdown格式)。数据处理与ETL示例1:CSV文件读取与处理SparkSessionspark=SparkSession.builder().appName("CSVProc
- INVALID_COLUMN_NAME _AS_PATH
sparksql异常[INVALID_COLUMN_NAME_AS_PATH]ThedatasourceHiveFileFormatcannotsavethecolumnmin(birth_date)becauseitsnamecontainssomecharactersthatarenotallowedinfilepaths.Piease,useanallastorenameidemosqlSE
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla