Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
求最大子矩阵
自己太弱了,曾经写过一次还wa了n次
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define max(a,b) a>b?a:b
using namespace std;
int a[110][110],n;
int max1(int a[]) {
int sum=-10000000,b=0;
for(int i=0; i<n; i++) {
if(b<0)b=a[i];
else b+=a[i];
sum=max(b,sum);
}
return sum;
}
int max2() {
int sum=-10000000;
for(int i=0; i<n; i++) {
int b[110]= {0};
for(int j=i; j<n; j++) {
for(int k=0; k<n; k++) {
b[k]+=a[j][k];
}
sum=max(max1(b),sum);//这里错了好久
}
}
return sum;
}
int main() {
while(cin>>n) {
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
scanf("%d",&a[i][j]);
printf("%d\n",max2());
}
return 0;
}