POJ 3070 矩阵的幂

Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11873   Accepted: 8432

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.



#include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; typedef long long ll; typedef vector<int> vec; typedef vector<vec> mat; ll n; const ll M = 10000; mat mul (mat &a, mat &b){ mat c(a.size(), vec(b[0].size())); for(int i = 0; i < a.size(); i++){ for(int k = 0; k < b.size(); k++){ for(int j = 0; j < b[0].size(); j++){ c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % M; } } } return c; } mat pow_mod(mat a, ll n){ mat b(a.size(), vec(a.size())); for (int i = 0; i < a.size(); i++){ b[i][i] = 1; } while (n > 0){ if (n & 1) b = mul(b, a); a = mul(a, a); n >>= 1; } return b; } void solve(){ mat a(2, vec(2)); a[0][0] = 1, a[0][1] = 1; a[1][0] = 1, a[1][1] = 0; a = pow_mod(a, n); printf("%d\n", a[1][0]); } int main(){ while(scanf("%I64d", &n) && n != -1){ solve(); } return 0; } </vec></int></vector></cstring></algorithm></cstdio>

你可能感兴趣的:(POJ 3070 矩阵的幂)