Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 99999999
using namespace std;
int a[111][111],b[111];
int fun(int n) //求连续子序列和的最大值
{
int i,sum,ans;
sum=0;ans=-inf;
for(i=1;i<=n;i++) {
sum+=b[i];
ans=max(ans,sum);
if(sum<0) sum=0;
}
return ans;
}
int main()
{
int n,i,j,k,ans;
cin>>n;
for(i=1;i<=n;i++) {
for(j=1;j<=n;j++)
cin>>a[i][j];
}
ans=-inf;
for(i=1;i<=n;i++) { //暴力每一种矩阵的情况,选择最大值
for(j=1;j<=n;j++) b[j]=0;
for(j=i;j<=n;j++) {
for(k=1;k<=n;k++) {
b[k]+=a[j][k];
}
ans=max(fun(k),ans);
}
}
cout<<ans<<endl;
return 0;
}