- PytorchLightning最佳实践基础篇
贝塔西塔
工程经验pytorchLightning深度学习编程框架
PyTorchLightning(简称PL)是一个建立在PyTorch之上的高层框架,核心目标是剥离工程代码与研究逻辑,让研究者专注于模型设计和实验思路,而非训练循环、分布式配置、日志管理等重复性工程工作。本文从基础到进阶,全面介绍其功能、核心组件、封装逻辑及最佳实践。一、PyTorchLightning核心价值原生PyTorch训练代码中,大量精力被消耗在:手动编写训练/验证循环(epoch、b
- Epoch
老兵发新帖
人工智能
在深度学习和机器学习中,Epoch(轮次或周期)是一个核心训练概念,指模型在整个训练数据集上完成一次完整遍历的过程。以下是关于Epoch的详细解析:一、核心定义基本含义Epoch表示模型将所有训练数据完整学习一次的过程。例如:若训练集有10,000个样本,则1个Epoch即模型用这10,000个样本训练一轮。与相关概念的关系Batch(批次):数据集被分割成的小组(如每批32个样本)。Iterat
- 【深度学习实战】当前三个最佳图像分类模型的代码详解
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型机器学习TransformerEfficientNetConvNeXt
下面给出三个在当前图像分类任务中精度表现突出的模型示例,分别基于SwinTransformer、EfficientNet与ConvNeXt。每个模型均包含:训练代码(使用PyTorch)从预训练权重开始微调(也可注释掉预训练选项,从头训练)数据集目录结构:└──dataset_root├──buy#第一类图像└──nobuy#第二类图像随机拆分:80%训练,20%验证每个Epoch输出一次loss
- lstm 数据输入问题
AI算法网奇
python基础lstm人工智能
lstm我有20*6条数据,20个样本,每个样本6条历史数据,每条数据有5个值,我送给网络输入时应该是20*6*5还是6*20*5你的数据是:20个样本(batchsize=20)每个样本有6条历史数据(sequencelength=6)每条数据有5个值(inputsize=5)✅正确的输入形状是:(20,6,5)#即batch_size=20,seq_len=6,input_size=5前提是你
- huggingface 笔记: Trainer
UQI-LIUWJ
笔记人工智能
Trainer是一个为Transformers中PyTorch模型设计的完整训练与评估循环只需将模型、预处理器、数据集和训练参数传入Trainer,其余交给它处理,即可快速开始训练自动处理以下训练流程:根据batch计算loss使用backward()计算梯度根据梯度更新权重重复上述流程直到达到指定的epoch数1配置TrainingArguments使用TrainingArguments定义训练
- ppocrv5训练参数设置完整配置(实测在2080ti可成功运行且f1>85%)
Global:model_name:PP-OCRv5_server_det#Tousestaticmodelforinference.debug:falseuse_gpu:trueepoch_num:&epoch_num500log_smooth_window:20print_batch_step:5save_model_dir:./output/PP-OCRv5_server_detsave_e
- day40python打卡
qq_58459892
py打开学习人工智能机器学习深度学习
知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。昨天我们介绍了图像数据的格式以及模型定义的过程,发现和之前结构化数据的略有不同,主要差异体现在
- 熟练掌握RabbitMQ和Kafka的使用及相关应用场景。异步通知与解耦,流量削峰,配合本地消息表实现事务的最终一致性并解决消息可靠、顺序消费和错误重试等问题
老三牛擦
skywalking
RabbitMQstock.#.nyse,#匹配多个字符,*匹配一个字符。ConfirmCallback到达exchange的回调。ReturnCallback到达queue失败的回调。KafkaKafka生产端分区器:1.直接指定partition指定0,1。2.设置hashkey,计算key的hash值进行取模分区。3.不设置分区键,采用粘性发送,即往某个分区发送至batchSize16K大小
- DAY 40 训练和测试的规范写法
acstdm
python打卡60天人工智能深度学习机器学习
目录一、单通道图片的规范写法图像任务中的张量形状NLP任务中的张量形状1.Flatten操作2.view/reshape操作总结二、彩色图片的规范写法知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout昨天我们介绍了图像数据的格式以及模型定义的过程,发现和之前
- 模型调试实用技巧
喝过期的拉菲
PyTorchLightning调试模型Lightningpytorch
【PL基础】模型调试实用技巧1.设置断点2.快速运行所有模型代码一次3.缩短epoch长度4.运行健全性检查5.打印LightningModule权重摘要6.打印输入输出层尺寸1.设置断点 断点会停止代码执行,以便您可以检查变量等。并允许您的代码一次执行一行。deffunction_to_debug():x=2#setbreakpointbreakpoint()y=x**2在此示例中,代码将在执
- python中的高级变量IV
hbwhmama
python学习python开发语言
python中的高级变量IV列表(list)的循环遍历列表遍历就是从头到尾依次从列表中提取数据列表遍历的实现:建立一个循环,在循环体内部对每一个元素执行相同的操作为了提高遍历效率,python使用迭代(iteration)遍历迭代遍历的实现:for循环体内部的变量in列表名(for后面的变量名自定)代码演示name_list=["Ken","John","Jack","Alice","Jan"]f
- 再来看看Python中的迭代器&生成器
孤寒者
Python全栈系列教程python迭代器生成器可迭代对象
目录:每篇前言:迭代器(Iterator)与生成器(Generator)1.迭代(Iteration)可迭代对象(Iterable)0、判断是否可迭代自定义可迭代对象示例方法一:通过实现`__iter__`返回生成器方法二:通过实现旧式协议`__getitem__`方法三:封装已有可迭代对象迭代器(Iterator)示例一:使用内置迭代器✍示例二:自定义迭代器类2.生成器(Generator)生成
- DAY 40 训练和测试的规范写法
小白菜333666
深度学习人工智能
知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Datas
- Day 40训练
Nina_717
python打卡训练营python
Day40训练PyTorch图像数据训练与测试的规范写法单通道图像的规范训练流程数据预处理与加载模型定义训练与测试函数封装模型训练执行彩色图像的扩展应用数据预处理调整模型结构调整关键要点总结知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout作业:仔细学习下测
- DAY 40 训练和测试的规范写法
HINOTOR_
Python训练营python开发语言
目录DAY40训练和测试的规范写法1.彩色和灰度图片测试和训练的规范写法:封装在函数中2.展平操作:除第一个维度batchsize外全部展平3.dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。DAY40训练和测试的规范写法importtorchimpo
- tensorflow GPU训练loss与val loss值差距过大问题
LXJSWD
tensorflow人工智能python
问题最近在ubuntugpu上训练模型,训练十轮,结果如下epoch,loss,lr,val_loss200,nan,0.001,nan200,0.002468767808750272,0.001,44.29948425292969201,0.007177405059337616,0.001,49.16984176635742202,0.012423301115632057,0.001,49.30
- Python训练营-Day37-早停策略和模型权重的保存
1.记录训练集的损失函数可以观察是否过拟合#记录损失值并更新进度条if(epoch+1)%200==0:losses.append(loss.item())epochs.append(epoch+1)#更新进度条的描述信息pbar.set_postfix({'Loss':f'{loss.item():.4f}'})2.模型保存和加载#保存模型参数torch.save(model.state_dic
- python打卡day40
ZHPEN1
Python打卡python
知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout导入包#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Da
- 初学者对训练神经网络的疑问
shuise_9527
神经网络人工智能深度学习
作为初学者,在开始跑论文当中的代码,会产生一些疑问,我希望用这篇总结一下。如果有没涉及到的,或者错误之处,希望大家可以指出来,后面我也会在学习中不断完善这部分内容。超参数1.batchsize(批量大小)每次训练输入给模型多少张图像。例如batchsize=8,那模型每次只处理8张,叫做“一个batch”如果共有10,000张训练图,那么一个epoch会包含10,000÷8=1250个batch2
- 6.13打卡
丁值心
机器学习小白从0到1人工智能深度学习python开发语言机器学习
@浙大疏锦行DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高对猫狗数据集进行训练Epoch50/50完成|耗时:32.76s|训练准确率:93.98%|测试准确率:87.89%importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvision
- Redis 哨兵模式
伤不起bb
redis数据库缓存
目录一、Redis哨兵介绍1.概述2.实现原理3.架构4.选举领导者哨兵的过程5.故障后恢复过程6.实现原理二、实验案例环境三、搭建基础环境四、部署Redis主从五、部署哨兵节点1.部署哨兵2.修改配置文件3.编写服务脚本4.查看哨兵状态信息5.故障转移6.查看哨兵epoch一、Redis哨兵介绍1.概述Redis哨兵是分布式高可用解决方案,用于实现:主从自动故障转移(Master-SlaveFa
- Python训练day40
Mantanmu
Python打卡训练python人工智能机器学习
知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。道图片的规范写法#先继续之前的代码importtorchimporttorch.nnasnni
- Python 训练营打卡 Day 44
2401_86382089
Python打卡python
预训练模型1.预训练模型的概念我们之前在训练中发现,准确率最开始随着epoch的增加而增加。随着循环的更新,参数在不断发生更新。所以参数的初始值对训练结果有很大的影响:如果最开始的初始值比较好,后续训练轮数就会少很多很有可能陷入局部最优值,不同的初始值可能导致陷入不同的局部最优值所以很自然的想到,如果最开始能有比较好的参数,即可能导致未来训练次数少,也可能导致未来训练避免陷入局部最优解的问题。这就
- Redis哨兵模式
惊起白鸽450
redismybatis数据库
目录概述实现原理基础环境部署Redis主从部署Redis服务编写服务脚本修改配置文件主从验证部署哨兵节点部署哨兵修改配置文件编写服务脚本查看哨兵状态信息故障转移查看哨兵epoch概述在一主多从的Redis架构中,从节点可以起到数据冗余备份和读写分离的作用。如果主节点遇到故障导致无法提供服务时,可以采用手动方式将其一个从节点提升为主节点,保证Redis主从能够正常工作。主从切换通过手动完成比较耗时、
- 第四十天打卡
wswlqsss
人工智能机器学习
知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。灰度图片importtorchimporttorch.nnasnnimporttorch.op
- 深度学习习题3
1.训练神经网络过程中,损失函数在一些时期(Epoch)不再减小,原因可能是:1.学习率太低2.正则参数太大3.卡在了局部最小值A1and2B.2and3C.1and3D.都是2.对于分类任务,我们不是将神经网络中的随机权重初始化,而是将所有权重设为零。下列哪项正确?A.没有任何问题,神经网络模型将正常训练B.神经网络模型可以训练,但所有的神经元最终将识别同样的事情C.神经网络模型不会进行训练,因
- day40打卡
嘻嘻哈哈OK啦
Python打卡训练营内容人工智能机器学习深度学习
知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。importtorchimporttorch.nnasnnimporttorch.optima
- python打卡day40
(・Д・)ノ
Python打卡训练python开发语言
神经网络训练和测试的规范写法知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了之前的学习中定义了一个全连接神经网络结构,训练的时候是一步一步分开写
- CUDA内存溢出问题解决方案
shangjg3
Pytorch人工智能
这个错误表明你的GPU内存不足,无法分配所需的76MB内存。GTX1660SUPER只有6GB显存,在处理大型深度学习模型时确实容易遇到内存不足的问题。以下是几种解决方案:1.减少批量大小(BatchSize)这是最直接的方法,降低每个批次处理的样本数量:
- DAY36打卡@浙大疏锦行
weixin_71046789
Python打卡训练营内容人工智能深度学习python
1.接35day作业补充总体来看,配置2和配置3在准确率和损失值上表现较好,但配置3训练速度更快;配置1在各项指标上相对较弱。可以根据实际需求(如对训练时间和准确率的侧重)来选择最终使用的超参数配置。从训练损失对比图可以看出,三条曲线分别代表三种不同超参数配置下模型训练过程中损失值(Loss)随训练轮次(Epoch)的变化情况,且三条曲线的损失值都随着Epoch的增加呈下降趋势,说明三种配置下模型
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {