要建立一颗树,使得树的边sum最小,同时判断是否能生成一颗树..
Nick's company employed n people. Now Nick needs to build a tree hierarchy of «supervisor-surbodinate» relations in the company (this is to say that each employee, except one, has exactly one supervisor). There are m applications written in the following form: «employeeai is ready to become a supervisor of employee bi at extra cost ci». The qualification qj of each employee is known, and for each application the following is true: qai > qbi.
Would you help Nick calculate the minimum cost of such a hierarchy, or find out that it is impossible to build it.
Input
The first input line contains integer n (1 ≤ n ≤ 1000) — amount of employees in the company. The following line contains n space-separated numbers qj (0 ≤ qj ≤ 106)— the employees' qualifications. The following line contains number m (0 ≤ m ≤ 10000) — amount of received applications. The following m lines contain the applications themselves, each of them in the form of three space-separated numbers: ai, bi and ci (1 ≤ ai, bi ≤ n, 0 ≤ ci ≤ 106). Different applications can be similar, i.e. they can come from one and the same employee who offered to become a supervisor of the same person but at a different cost. For each application qai > qbi.
Output
Output the only line — the minimum cost of building such a hierarchy, or -1 if it is impossible to build it.
Sample Input
4 7 2 3 1 4 1 2 5 2 4 1 3 4 1 1 3 5
11
3 1 2 3 2 3 1 2 3 1 3
-1
Hint
In the first sample one of the possible ways for building a hierarchy is to take applications with indexes 1, 2 and 4, which give 11 as the minimum total cost. In the second sample it is impossible to build the required hierarchy, so the answer is -1.
my code:
#include<bits/stdc++.h> using namespace std; const int N = 1111; const int inf = 0x3f3f3f3f; int fa[N],a[N]; struct node { int x; int r; }; vector<node>vv[N]; int find(int x) { int r=x; while(fa[r]!=r) r=fa[r]; int i=x,j; while(i!=r) { j=fa[i]; fa[i]=r; i=j; } return r; } int main() { int n,i,j,ans,m,y,tem,index; int fx,fy; node t; cin>>n; for(i=1;i<=n;i++) { fa[i]=i; cin>>a[i]; } cin>>m; while(m--) { cin>>t.x>>y>>t.r; if(a[t.x]>a[y]) vv[y].push_back(t); } ans=0; for(i=1;i<=n;i++) { tem=inf;index=i; for(j=0;j<vv[i].size();j++) { t=vv[i][j]; if(t.r<tem) { tem=t.r; index=t.x; } } fx=find(i); fy=find(index); if(fx!=fy) { fa[fx]=fy; ans+=tem; } } for(i=2;i<=n;i++) { if(find(1)!=find(i)) break; } if(i>n) cout<<ans<<endl; else cout<<"-1"<<endl; return 0; }
#include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <queue> #define REP(AA,BB) for(int AA=0; AA<(BB); ++AA) #define FOR(AA,BB,CC) for(int AA=(BB); AA<(CC); ++AA) #define FC(AA,BB) for(__typeof((AA).begin()) BB=(AA).begin(); BB!=(AA).end(); ++BB) #define SZ(AA) ((int)((AA).size())) #define ALL(AA) (AA).begin(), (AA).end() #define PB push_back #define MP make_pair using namespace std; typedef vector<int> VI; typedef pair<int, int> PII; typedef long long LL; typedef long double LD; const int MAXN = 1010; int best[MAXN], INF = 1000000000; int main(void) { int n; scanf("%d", &n); REP (i, n) { scanf("%*d"); best[i] = INF; } int m; scanf("%d", &m); REP (i, m) { int a, b, c; scanf("%d%d%d", &a, &b, &c); --a; --b; best[b] = min(best[b], c); } int inf_count = 0, res = 0; REP (i, n) { if (best[i] == INF) { ++inf_count; } else { res += best[i]; } } if (inf_count != 1) { puts("-1"); } else { printf("%d\n", res); } return 0; }