Mr. Santa asks all the great programmers of the world to solve a trivial problem. He gives them an integer m and asks for the number of positive integers n, such that the factorial of n ends with exactly m zeroes. Are you among those great programmers who can solve this problem?
The only line of input contains an integer m (1 ≤ m ≤ 100 000) — the required number of trailing zeroes in factorial.
First print k — the number of values of n such that the factorial of n ends with m zeroes. Then print these k integers in increasing order.
1
5 5 6 7 8 9
5
0
The factorial of n is equal to the product of all integers from 1 to n inclusive, that is n! = 1·2·3·...·n.
In the first sample, 5! = 120, 6! = 720, 7! = 5040, 8! = 40320 and 9! = 362880.
【二分解法】
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); } #define MS(x,y) memset(x,y,sizeof(x)) #define MC(x,y) memcpy(x,y,sizeof(x)) #define MP(x,y) make_pair(x,y) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; } const int N = 0, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f; int n; int main() { while (~scanf("%d", &n)) { int l = 0; int r = 1e9; while (l < r) { int m = (l + r + 1) >> 1; int five = 0; int tmp = m; while (tmp) { tmp /= 5; five += tmp; } if (five > n)r = m - 1; else l = m; } int R = l; l = 0; r = 1e9; while (l < r) { int m = (l + r) >> 1; int five = 0; int tmp = m; while (tmp) { tmp /= 5; five += tmp; } if (five < n)l = m + 1; else r = m; } int L = l; printf("%d\n", R - L + 1); for (int i = L; i <= R; ++i)printf("%d ", i); puts(""); } return 0; } /* 【题意】 给你一个数组n(1<=n<=1e5) 让你输出有多少数的阶乘后恰好有n个0,并依次输出。 【类型】 二分or暴力 【分析】 肯定满足,数字越大,其后的0的个数也就越多。 于是我们可以二分出最小的l,使得fac[l]>=n 同时我们二分出最大的r,使得fac[r]<=n 然后答案就是区间段[l,r] 而算fac[l]有多少个0,就是查看fac[l]中有多少个5 因为n不大,所以另外一种做法是暴力。 我们直接求出fac[i]的末尾有多少个0即可 【时间复杂度&&优化】 O(log(n)log(n)) or O(nlogn) */
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); } #define MS(x,y) memset(x,y,sizeof(x)) #define MC(x,y) memcpy(x,y,sizeof(x)) #define MP(x,y) make_pair(x,y) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; } const int N = 0, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f; int n; void solve() { int l = -1; int r = -2; int zero = 0; for (int i = 0; ; ++i) { for (int x = i; x && x % 5 == 0; x /= 5)++zero; if (zero == n) { if (l == -1)l = i; r = i; } else if (zero > n)break; } printf("%d\n", r - l + 1); for (int i = l; i <= r; ++i)printf("%d ", i); puts(""); } int main() { while (~scanf("%d", &n)) { solve(); } return 0; } /* 【题意】 给你一个数组n(1<=n<=1e5) 让你输出有多少数的阶乘后恰好有n个0,并依次输出。 【类型】 二分or暴力 【分析】 肯定满足,数字越大,其后的0的个数也就越多。 于是我们可以二分出最小的l,使得fac[l]>=n 同时我们二分出最大的r,使得fac[r]<=n 然后答案就是区间段[l,r] 而算fac[l]有多少个0,就是查看fac[l]中有多少个5 因为n不大,所以另外一种做法是暴力。 我们直接求出fac[i]的末尾有多少个0即可 【时间复杂度&&优化】 O(log(n)log(n)) or O(nlogn) */