![]() ![]() |
PDF (English) | Statistics | Forum |
Time Limit: 2 second(s) | Memory Limit: 32 MB |
Given a set of digits S, and an integer n, you have to find how many n-digit integers are there, which contain digits that belong to S and the difference between any two adjacent digits is not more than two.
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case contains two integers, m (1 ≤ m < 10) and n (1 ≤ n ≤ 10). The next line will contain m integers (from 1 to 9) separated by spaces. These integers form the set S as described above. These integers will be distinct and given in ascending order.
For each case, print the case number and the number of valid n-digit integers in a single line.
Sample Input |
Output for Sample Input |
3 3 2 1 3 6 3 2 1 2 3 3 3 1 4 6 |
Case 1: 5 Case 2: 9 Case 3: 9 |
For the first case the valid integers are
11
13
31
33
66
题意:求长度为n的每一位都属于集合S且相邻位差的绝对值<=2的数的个数。 解析:套模板记忆化搜索。 #include <cstdio> #include <algorithm> #include <cstring> using namespace std; int t; int m, n; int a[11]; int dp[11][11]; int cas; int dfs (int i, int s, bool z) { if (i == -1) return 1; if (!z && dp[i][s] != -1) return dp[i][s]; int d, res = 0; for (int d = 0; d < m; d++){ if (z) res += dfs(i - 1, a[d], 0); else if (abs(a[d] - s) <= 2) res += dfs(i - 1, a[d], 0); } return z ? res : dp[i][s] = res; } int main() { scanf("%d", &t); for (cas = 1; cas <= t; cas++){ scanf("%d%d", &m, &n); for (int i = 0; i < m; i++){ scanf("%d", &a[i]); } memset (dp, -1, sizeof(dp)); printf("Case %d: %d\n", cas, dfs(n - 1, 0, 1)); } return 0; }
一个简单的数位dp,挺好的入门题。
dp[i][j]定义为长度为i,最高位为J的数的个数。
状态转移方程为:
for(int i=2;i<=n;i++)
for(int j=1;j<=9;j++)
if(a[j])//只能用给定的数
{
for(int k=j-2;k<=j+2;k++)
if(k>=1&&k<=9)
dp[i][j]+=dp[i-1][k];
}
#include<cstdio> #include<iostream> #include<cstring> using namespace std; int m,n,ans; bool a[10]; int dp[15][15]; void unit() { memset(dp,0,sizeof(dp)); for(int i=1;i<=9;i++) if(a[i]) dp[1][i]=1; } void solve() { for(int i=2;i<=n;i++) for(int j=1;j<=9;j++) if(a[j]){ for(int k=j-2;k<=j+2;k++) if(k>=1&&k<=9) dp[i][j]+=dp[i-1][k]; } ans=0; for(int i=1;i<=9;i++) ans+=dp[n][i]; } int main() { int T,t,i,x; cin>>T; for(t=1;t<=T;t++){ cin>>m>>n; memset(a,0,sizeof(a)); for(i=1;i<=m;i++){ cin>>x; a[x]=1; } unit(); solve(); printf("Case %d: %d\n",t,ans); } return 0; }