Python中使用线程有两种方式:函数或者用类来包装线程对象。
1、函数式:调用thread模块中的start_new_thread()函数来产生新线程。如下例:
上面的例子定义了一个线程函数timer,它打印出10条时间记录后退出,每次打印的间隔由interval参数决定。thread.start_new_thread(function, args[, kwargs])的第一个参数是线程函数(本例中的timer方法),第二个参数是传递给线程函数的参数,它必须是tuple类型,kwargs是可选参数。
线程的结束可以等待线程自然结束,也可以在线程函数中调用thread.exit()或thread.exit_thread()方法。
2、创建threading.Thread的子类来包装一个线程对象,如下例:
就我个人而言,比较喜欢第二种方式,即创建自己的线程类,必要时重写threading.Thread类的方法,线程的控制可以由自己定制。
threading.Thread类的使用:
1,在自己的线程类的__init__里调用threading.Thread.__init__(self, name = threadname)
Threadname为线程的名字
2,run(),通常需要重写,编写代码实现做需要的功能。
3,getName(),获得线程对象名称
4,setName(),设置线程对象名称
5,start(),启动线程
6,join([timeout]),等待另一线程结束后再运行。
7,setDaemon(bool),设置子线程是否随主线程一起结束,必须在start()之前调用。默认为False。
8,isDaemon(),判断线程是否随主线程一起结束。
9,isAlive(),检查线程是否在运行中。
此外threading模块本身也提供了很多方法和其他的类,可以帮助我们更好的使用和管理线程。可以参看http://www.python.org/doc/2.5.2/lib/module-threading.html。
假设两个线程对象t1和t2都要对num=0进行增1运算,t1和t2都各对num修改10次,num的最终的结果应该为20。但是由于是多线程访问,有可能出现下面情况:在num=0时,t1取得num=0。系统此时把t1调度为”sleeping”状态,把t2转换为”running”状态,t2页获得num=0。然后t2对得到的值进行加1并赋给num,使得num=1。然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给num。这样,明明t1和t2都完成了1次加1工作,但结果仍然是num=1。
上面的case描述了多线程情况下最常见的问题之一:数据共享。当多个线程都要去修改某一个共享数据的时候,我们需要对数据访问进行同步。
1、简单的同步
最简单的同步机制就是“锁”。锁对象由threading.RLock类创建。线程可以使用锁的acquire()方法获得锁,这样锁就进入“locked”状态。每次只有一个线程可以获得锁。如果当另一个线程试图获得这个锁的时候,就会被系统变为“blocked”状态,直到那个拥有锁的线程调用锁的release()方法来释放锁,这样锁就会进入“unlocked”状态。“blocked”状态的线程就会收到一个通知,并有权利获得锁。如果多个线程处于“blocked”状态,所有线程都会先解除“blocked”状态,然后系统选择一个线程来获得锁,其他的线程继续沉默(“blocked”)。
Python中的thread模块和Lock对象是Python提供的低级线程控制工具,使用起来非常简单。如下例所示:
Python在thread的基础上还提供了一个高级的线程控制库,就是之前提到过的threading。Python的threading module是在建立在thread module基础之上的一个module,在threading module中,暴露了许多thread module中的属性。在thread module中,python提供了用户级的线程同步工具“Lock”对象。而在threading module中,python又提供了Lock对象的变种: RLock对象。RLock对象内部维护着一个Lock对象,它是一种可重入的对象。对于Lock对象而言,如果一个线程连续两次进行acquire操作,那么由于第一次acquire之后没有release,第二次acquire将挂起线程。这会导致Lock对象永远不会release,使得线程死锁。RLock对象允许一个线程多次对其进行acquire操作,因为在其内部通过一个counter变量维护着线程acquire的次数。而且每一次的acquire操作必须有一个release操作与之对应,在所有的release操作完成之后,别的线程才能申请该RLock对象。
下面来看看如何使用threading的RLock对象实现同步。
我们把修改共享数据的代码成为“临界区”。必须将所有“临界区”都封闭在同一个锁对象的acquire和release之间。
2、条件同步
锁只能提供最基本的同步。假如只在发生某些事件时才访问一个“临界区”,这时需要使用条件变量Condition。
Condition对象是对Lock对象的包装,在创建Condition对象时,其构造函数需要一个Lock对象作为参数,如果没有这个Lock对象参数,Condition将在内部自行创建一个Rlock对象。在Condition对象上,当然也可以调用acquire和release操作,因为内部的Lock对象本身就支持这些操作。但是Condition的价值在于其提供的wait和notify的语义。
条件变量是如何工作的呢?首先一个线程成功获得一个条件变量后,调用此条件变量的wait()方法会导致这个线程释放这个锁,并进入“blocked”状态,直到另一个线程调用同一个条件变量的notify()方法来唤醒那个进入“blocked”状态的线程。如果调用这个条件变量的notifyAll()方法的话就会唤醒所有的在等待的线程。
如果程序或者线程永远处于“blocked”状态的话,就会发生死锁。所以如果使用了锁、条件变量等同步机制的话,一定要注意仔细检查,防止死锁情况的发生。对于可能产生异常的临界区要使用异常处理机制中的finally子句来保证释放锁。等待一个条件变量的线程必须用notify()方法显式的唤醒,否则就永远沉默。保证每一个wait()方法调用都有一个相对应的notify()调用,当然也可以调用notifyAll()方法以防万一。
生产者与消费者问题是典型的同步问题。这里简单介绍两种不同的实现方法。
1,条件变量
上面的例子中,在初始状态下,Consumer处于wait状态,Producer连续生产(对x执行增1操作)5次后,notify正在等待的Consumer。Consumer被唤醒开始消费(对x执行减1操作)
2,同步队列
Python中的Queue对象也提供了对线程同步的支持。使用Queue对象可以实现多个生产者和多个消费者形成的FIFO的队列。
生产者将数据依次存入队列,消费者依次从队列中取出数据。
在上面的例子中,Producer在随机的时间内生产一个“产品”,放入队列中。Consumer发现队列中有了“产品”,就去消费它。本例中,由于Producer生产的速度快于Consumer消费的速度,所以往往Producer生产好几个“产品”后,Consumer才消费一个产品。
Queue模块实现了一个支持多producer和多consumer的FIFO队列。当共享信息需要安全的在多线程之间交换时,Queue非常有用。Queue的默认长度是无限的,但是可以设置其构造函数的maxsize参数来设定其长度。Queue的put方法在队尾插入,该方法的原型是:
put(item[, block[, timeout]])
如果可选参数block为true并且timeout为None(缺省值),线程被block,直到队列空出一个数据单元。如果timeout大于0,在timeout的时间内,仍然没有可用的数据单元,Full exception被抛出。反之,如果block参数为false(忽略timeout参数),item被立即加入到空闲数据单元中,如果没有空闲数据单元,Full exception被抛出。
Queue的get方法是从队首取数据,其参数和put方法一样。如果block参数为true且timeout为None(缺省值),线程被block,直到队列中有数据。如果timeout大于0,在timeout时间内,仍然没有可取数据,Empty exception被抛出。反之,如果block参数为false(忽略timeout参数),队列中的数据被立即取出。如果此时没有可取数据,Empty exception也会被抛出.
Python Queue模块使用
创建一个“队列”对象
import Queue
myqueue = Queue.Queue(maxsize = 10)
Queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。
将一个值放入队列中
myqueue.put(10)
调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目的值;第二个block为可选参数,默认为1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0,put方法将引发Full异常。
将一个值从队列中取出
myqueue.get()
调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且block为True,get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。
python queue模块有三种队列:
1、python queue模块的FIFO队列先进先出。
2、LIFO类似于堆。即先进后出。
3、还有一种是优先级队列级别越低越先出来。
针对这三种队列分别有三个构造函数:
1、class Queue.Queue(maxsize) FIFO
2、class Queue.LifoQueue(maxsize) LIFO
3、class Queue.PriorityQueue(maxsize) 优先级队列
介绍一下此包中的常用方法:
Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.full 与 maxsize 大小对应
Queue.get([block[, timeout]]) 获取队列,timeout等待时间
Queue.get_nowait() 相当Queue.get(False)
非阻塞 Queue.put(item) 写入队列,timeout等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)
Queue.task_done() 在完成一项工作之后,Queue.task_done() 函数向任务已经完成的队列发送一个信号
Queue.join() 实际上意味着等到队列为空,再执行别的操作
#!/usr/bin/env python import Queue import threading import time import random q=Queue.Queue(0) NUM_WORKERS = 3 class MyThread(threading.Thread): """A worker thread.""" def __init__(self, input, worktype): self._jobq = input self._work_type = worktype threading.Thread.__init__(self) def run(self): """ Get a job and process it. Stop when there's no more jobs """ while True: if self._jobq.qsize()>0: job = self._jobq.get() worktype=self._work_type self._process_job(job,worktype) else: break def _process_job(self, job,worktype): """ Do useful work here. worktype: let this thread do different work 1,do list 2,do item 3,,, """ doJob(job) def doJob(job): """ do work function 1 """ time.sleep(random.random()*3) print "doing ",job if __name__=='__main__': print "begin..." #put some work to q for i in range(NUM_WORKERS*2): q.put(i) #print total job q's size print "job q'size",q.qsize() #start threads to work for x in range(NUM_WORKERS): MyThread(q,x).start() #if q is not empty, wait #while q.qsize()>0: # time.sleep(0.1)
并发线程:
import threading import subprocess import Queue num_thread = 10 //线程数 queue = Queue.Queue() //队列实例 ips = ["202.96.209.5", "202.96.209.6", "202.96.209.133", "202.96.209.134"] def pinger(i, q): while True: ip = q.get() //获取ip队列 print "Thread %s: Pinging %s" % (i, ip) ret = subprocess.call("ping -c 1 %s" % ip, shell = True, stdout = open('/dev/null', 'w'), stderr = subprocess.STDOUT) if ret == 0: print "%s: is alive" % ip else: print "%s: did not respond" % ip q.task_done() //Queue.Queue.task_done() 告诉queue.join()已经完成 从队列中提取元素的工作 for i in range(num_thread): worker = threading.Thread(target=pinger, args=(i,queue)) worker.setDaemon(True) //设置子线程是否随主线程一起结束 worker.start() for ip in ips: queue.put(ip) //将ip放入队列 print "Main Thread Waiting" queue.join() //主线程等待其他线程完成,实际上意味着等到队列为空, 再执行别的操作 print "Done"
简易并发
这里使用python的multiprocessing来做简单的并发:
from multiprocessing import Process import time import os def test(ip): ppid = os.getppid() pid = os.getpid() print "%d ppid: %d %d" % (ip, ppid, pid) #time.sleep(1) for i in range(10): p = Process(target=test, args=(i,)) p.start() p.join()
这里p.join()是指是一个p运行完后才会运行下一个p,即阻塞式,如果不使用p.join()则是非阻塞时。
注意:1. 非阻塞时如果并发量较大,load会升高。2. 这里不涉及锁的问题,只做最简单的并发。