- 什么是缓存雪崩?缓存击穿?缓存穿透?分别如何解决?什么是缓存预热?
daixin8848
缓存redisjava开发语言
缓存雪崩:在一个时间段内,有大量的key过期,或者Redis服务宕机,导致大量的请求到达数据库,带来巨大压力-给key设置不同的TTL、利用Redis集群提高服务的高可用性、添加多级缓存、添加降级流策略缓存击穿:给某一个key设置了过期时间,当key过期的时间,恰好这个时间点有大量的并发请求访问这个key,可能会瞬间把数据库压垮-互斥锁:缓存失败时,只允许一个请求去加载数据并更新缓存,其他请求阻塞
- K8s常用的命令
尚未来-
运维k8s
一、基础命令查看集群信息bashkubectlcluster-info#显示集群端点和服务信息查看节点bashkubectlgetnodes#列出所有节点kubectldescribenode#查看节点详细信息查看命名空间bashkubectlgetnamespaces#列出所有命名空间切换命名空间bashkubectlconfigset-context--current--namespace=二
- K8S 常用命令全解析:高效管理容器化集群
恩爸编程
dockerkubernetes容器k8s常用命令k8s有哪些常用命令k8s命令有哪些K8S常用命令有哪些
K8S常用命令全解析:高效管理容器化集群一、引言Kubernetes(K8S)作为强大的容器编排平台,其丰富的命令行工具(kubectl)为用户提供了便捷的方式来管理集群中的各种资源。熟练掌握K8S常用命令对于开发人员和运维人员至关重要,能够有效提高容器化应用的部署、监控与维护效率。本文将详细介绍一些K8S常用命令及其使用案例。二、基础资源操作命令(一)kubectlcreate功能:用于创建K8
- 负载均衡-加权随机算法
BP白朴
Nginx负载均衡java算法服务器
负载均衡-加权随机算法由于访问概率大致相同,所以如果部分服务器性能不一致的话,容易导致性能差的服务器压力过大,所以要根据服务器性能不一致的情况,给性能好的服务器多处理请求,给差的少分配请求(能者多劳)所以就需要在随机算法的基础上给每台服务器设置权重,延伸为加权随机算法1、将应用服务器集群的IP存到Map里,每个IP对应有一个权重2、创建一个List,来将所有权重下的IP存到list里面如:192.
- Docker
℡余晖^
黑马点评项目相关问题和笔记dockereureka容器
在黑马点评项目中,在谈到Redisson解决redis的主从一致性问题时,弹幕提到了Docker,本文来简单了解一下Docker,我的初步理解运维是维护多个集群的稳定,那它和VM虚拟机的区别又是什么?,如果要更深入地理解与学习(运维工程师),可以到b站搜索专门的课程(SpringCloud)。一、Docker是什么?重新理解“容器化”的本质1.1Docker的定义Docker是一个开源的容器化平台
- 零基础学习性能测试第八章:高并发-redis缓存架构介绍
试着
性能测试缓存学习redis性能测试零基础
目录一、Redis在高并发中的核心价值二、Redis核心架构模式▶1.缓存穿透防御架构▶2.热点数据多级缓存三、Redis集群高可用方案▶1.RedisCluster分片架构▶2.读写分离方案四、Redis性能压测实战▶1.基准测试工具▶2.关键性能指标五、典型瓶颈分析与优化案例1:缓存雪崩案例2:热Key阻塞六、电商秒杀实战架构七、必须掌握的进阶技巧八、学习路径与工具推荐以下是为零基础学习者设计
- 深入了解 Kubernetes(k8s):从概念到实践
目录一、k8s核心概念二、k8s的优势三、k8s架构组件控制平面组件节点组件四、k8s+docker运行前后端分离项目的例子1.准备前端项目2.准备后端项目3.创建k8s部署配置文件4.部署应用到k8s集群在当今云计算和容器化技术飞速发展的时代,Kubernetes(简称k8s)已成为容器编排领域的事实标准。无论是互联网巨头、传统企业还是初创公司,都在广泛采用k8s来管理和部署容器化应用。本文将带
- 云端渲染:重塑影视、游戏与设计行业的算力革命
导言:云端渲染技术通过将繁重的图形计算任务迁移至云端强大的计算集群,有效突破了传统渲染对高性能本地硬件和漫长等待周期的依赖,显著降低了制作成本与门槛。它正日益成为驱动影视、游戏及设计行业创新的核心技术。本文将深入解析云端渲染的技术原理,并探讨其如何深刻变革这三大行业的格局与未来。一、云端渲染的技术原理:解构算力革新云端渲染,其核心在于将高负载的图形处理任务——如复杂的3D建模、动画特效、光影计算及
- 零基础学习性能测试第六章:性能难点-Jmeter实现海量用户压测
目录一、海量压测核心挑战与解决思路二、分布式压测集群搭建(百倍性能提升)1.架构设计2.实战步骤三、百万级用户参数化方案1.Redis预生成测试数据2.JMeter分段读取(避免内存溢出)3.CSV分片策略四、高并发优化配置模板1.`jmeter.properties`关键修改2.线程组配置技巧五、结果收集与监控方案1.轻量级结果存储2.实时监控看板六、海量压测实战案例:双11级流量模拟测试目标:
- Coze开源实战指南:构建企业级AI应用的全链路技术解析(含Kubernetes+服务网格深度实践)
一、Coze技术架构深度解析1.1核心组件与五层异构架构Coze采用五层异构架构(感知层→执行层→决策层→监控层→进化层),实现亚毫秒级实时响应与动态弹性扩展。其核心模块包括:架构亮点支持横向扩展的微服务集群基于Kubernetes的自动扩缩容机制服务网格(Istio)实现流量治理核心组件对比表组件功能特性典型性能指标CozeStudio30+节点类型/多模式编排响应速度提升300%CozeLoo
- 阿里云通用型实例云服务器收费标准及最新活动价格参考
阿里云最新优惠和活动汇总
通用型实例云服务器是很多企业级用户在购买阿里云服务器时比较喜欢选择实例规格,因为通用型实例云服务器的CPU与内存配比大多都是1:4,内存资源要高于cpu资源,这种搭配多适用于中小型数据库系统、缓存、搜索集群等场景,也适用于与网站应用等场景。通用型阿里云服务器图.png阿里云服务器通用型实例规格有哪些?目前属于通用型实例云服务器的实例规格有:通用型实例规格族g8a通用型实例规格族g8i通用平衡增强型
- Kafka——两种集群搭建详解 k8s
Michaelwubo
kafka分布式
1、简介Kafka是一个能够支持高并发以及流式消息处理的消息中间件,并且Kafka天生就是支持集群的,今天就主要来介绍一下如何搭建Kafka集群。Kafka目前支持使用Zookeeper模式搭建集群以及KRaft模式(即无Zookeeper)模式这两种模式搭建集群,这两种模式各有各的好处,今天就来分别介绍一下这两种方式1.1、Kafka集群中的节点类型一个Kafka集群是由下列几种类型的节点构成的
- Python, Go, Rust 开发全球海岛坐标定位APP
Geeker-2025
pythongolangrust
以下是一个基于**Python、Go和Rust**协同开发的全球海岛坐标定位APP设计方案,结合三者的优势实现高精度地理计算、实时数据处理和跨平台部署:---###系统架构```mermaidgraphTDA[卫星遥感数据源]-->B(Python数据处理)B-->C{Rust地理引擎}C-->D[Go微服务集群]D-->E[移动端/Web端]E-->F[用户终端]```---###模块分工及技术
- Python, C ++开发全国研学基地查询与管理APP
Geeker-2025
pythonc++
以下是基于Python和C++开发全国研学基地查询与管理APP的技术方案,结合高性能数据处理、混合语言开发及教育行业合规性要求:---###**一、核心功能架构**```mermaidgraphTDA[用户端APP]-->B{API网关}C[管理端平台]-->BB-->D[Python业务微服务]D-->E[C++数据处理引擎]D-->F[时空数据库集群]E-->G[智能推荐系统]F-->H[可视
- 高可用集群keepalived详解(基础部署与企业应用示例)
左水水%
负载均衡服务器数据库运维linux
目录一、高可用集群简介1.1集群的类型1.2系统的可用性1.3如何实现高可用1.4VRRP(虚拟路由冗余协议)---解决静态网关单点风险1.4.1VRRP相关术语1.4.2VRRP相关技术二、Keepalived部署2.1keepalived架构2.2环境准备三、keepalived基本配置3.1全局配置以及虚拟路由器3.1.1在ka1上面的配置3.1.2在ka2上面的配置3.1.2抓包测试3.2
- 运维-资产梳理
资产梳理一、明确目标与范围1.1、确定梳理目的网络安全:缩小攻击面、识别风险点。资源配置:优化资源利用率、降低成本。合规要求:满足法律法规或行业标准(如等保、ISO27001)。1.2、界定资产范围物理资产:服务器、网络设备、终端设备、IoT设备等。数字资产:操作系统、数据库、应用程序、域名、IP地址、云资源、容器/K8s集群、SaaS应用。数据资产:敏感数据(如客户信息、财务数据)、业务数据、备
- Python爬虫【三十五章】爬虫高阶:基于Docker集群的动态页面自动化采集系统实战
程序员_CLUB
Python入门到进阶python爬虫docker
目录一、技术演进与行业痛点二、核心技术栈深度解析2.1动态渲染三件套2.2Docker集群架构设计2.3自动化调度系统三、进阶实战案例3.1电商价格监控系统1.技术指标对比2.实现细节3.2新闻聚合平台1.WebSocket监控2.字体反爬破解四、性能优化与运维方案4.1资源消耗对比测试4.2集群运维体系五、总结与未来展望六、Python爬虫相关文章(推荐)一、技术演进与行业痛点在Web3.0时代
- Azure-in-bullet-points项目解析:深入理解Azure Service Fabric架构与技术实践
萧桔格Wilbur
Azure-in-bullet-points项目解析:深入理解AzureServiceFabric架构与技术实践一、AzureServiceFabric概述AzureServiceFabric是微软提供的分布式系统平台,专为构建和管理可扩展、可靠的微服务而设计。作为云原生应用开发的核心技术,它解决了现代分布式系统开发中的诸多挑战。核心特性集群管理能力:基于共享机器池(集群)构建,实现资源的高效利用
- K8S 1.22.1集群快速搭建
sxxs001
#K8Sdockerk8s
硬件环境准备腾讯云购买CVM3台【集群最小规模】https://buy.cloud.tencent.com/cvm?tab=custom&step=1&devPayMode=monthly®ionId=33CVM1:竞价实例、南京、南京一区、标准型S5\2C4G\0.09元/小时;带宽0.80元/GBCVM2、3;除带宽外,其他一致操作系统CentOSx648.2镜像新建安全组「打开所有端口
- 使用sealos进行k8s集群部署和sealos集群部署失败
七七powerful
centoslinux运维
下载Sealos命令行工具使用RPM源进行安装查看操作系统版本[root@master01~]#uname-aLinuxmaster014.18.0-553.52.1.0.1.an8.x86_64#1SMPThuMay1515:49:42CST2025x86_64x86_64x86_64GNU/Linux[root@master01~]#cat/etc/os-releaseNAME="Anolis
- kubeadm部署安装K8S集群及核心概念-02
Kubernetes组件介绍KubernetesCluster由Master和Node组成,节点上运行着若干Kubernetes服务。Master节点Master是KubernetesCluster的大脑,运行着如下Daemon服务:kube-apiserver、kube-scheduler、kube-controller-manager、etcd和Pod网络(例如flannel)。APIServ
- Kubeadm 快速搭建 k8s 集群&&安装可视化管理界面
头发莫的了呀
Kuberneteskubernetesdocker运维
文章目录1.实验准备2.安装docker3.配置阿里云K8Srepo源(三个节点)4.安装kubeadm,kubelet,kubectl(三个节点)5.部署kubernetesMaster节点(master节点上执行)6.k8s-node节点加入master节点(两个node执行)7.安装Pod网络插件(CNI插件,master节点)8.master节点安装可视化管理界面dashboard1.实验
- Go-Elasticsearch v9 从入门到进阶 REST API 与 Typed API 双剑合璧
Hello.Reader
golang检索搜索引擎golangelasticsearchjenkins
1、环境要求与安装项目说明Go版本1.21及以上(推荐使用近期版本1.23+)安装命令bash\ngogetgithub.com/elastic/go-elasticsearch/v9@latest\n版本对齐客户端主版本需与集群主版本一致(例如v9对ES9.x)2、快速连接Elasticsearch2.1低级API(本地9200端口)es,err:=elasticsearch.NewDefaul
- RocketMQ常见问题梳理
kk在加油
rocketmq
MQ常见问题深度剖析:消息不丢失、顺序性、幂等性与积压处理本文基于RocketMQ核心原理,结合Kafka/RabbitMQ对比,深入分析MQ四大核心问题解决方案一、消息不丢失保障机制消息丢失风险点跨网络传输:生产者→Broker、Broker→消费者、主从同步Broker缓存机制:PageCache异步刷盘导致数据未持久化极端故障:整个MQ集群宕机生产者保证方案1.发送确认机制//RocketM
- RocketMQ集群高级特性
RocketMQ集群高级特性详解本文档基于RocketMQ核心源码分析,深入探讨集群架构中的高可用实现机制一、DLedger文件一致性协议1.高可用集群下的消息一致性问题核心挑战:节点不稳定性(随时宕机)网络抖动导致请求丢失数据顺序保证困难快速响应客户端需求解决方案分类:弱一致性算法:DNS/Gossip协议(RedisCluster/Cassandra使用)强一致性算法:Raft系列(Rocke
- 在阿里云服务器上搭建单节点Kubernetes集群的完整指南与故障排除
老牛十八岁SYZ
Kubernetes阿里云服务器kubernetes
在阿里云服务器上搭建单节点Kubernetes集群的完整指南与故障排除在云计算和容器化技术日益普及的今天,Kubernetes(简称K8s)已成为容器编排的事实标准。本文将以阿里云服务器(AlibabaCloudLinux)为例,详细介绍如何搭建单节点Kubernetes集群,并针对实际操作中可能遇到的典型问题提供系统性解决方案。【阿里云限时特惠】云产品低至38元/年起!各位技术伙伴,阿里云爆款钜
- 【ELasticsearch】搭建有负载均衡 ELB 的 ES 集群
大数据与AI实验室
#Elastic#负载均衡elasticsearch搜索引擎大数据负载均衡ELB公有云集群
搭建有负载均衡ELB的ES集群1.为什么要这样设计(封装ELB)?2.如果没有这层负载均衡呢?3.外来的请求会打到集群哪一个节点上?4.优先是专属协调节点吗?5.ELB需要对接所有节点吗,还是协调节点就可以了?在公有云上为Elasticsearch集群封装一层ELB(ElasticLoadBalancer)或类似的负载均衡器,核心目的是解耦、简化客户端访问、提高可用性、增强可维护性。1.为什么要这
- 【Elasticsearch】跨集群检索(Cross-Cluster Search)
《Elasticsearch集群》系列,共包含以下文章:1️⃣冷热集群架构2️⃣合适的锅炒合适的菜:性能与成本平衡原理公式解析3️⃣ILM(IndexLifecycleManagement)策略详解4️⃣Elasticsearch跨机房部署5️⃣快照与恢复功能详解6️⃣Elasticsearch快照恢复API参数详解7️⃣安全地删除快照仓库、快照8️⃣快照生命周期管理SLM(理论篇)9️⃣快照生命
- 【Elasticsearch】Elasticsearch 跨机房部署
大数据与AI实验室
#Elasticelasticsearch大数据搜索引擎全文检索集群集群架构部署
《Elasticsearch集群》系列,共包含以下文章:1️⃣冷热集群架构2️⃣合适的锅炒合适的菜:性能与成本平衡原理公式解析3️⃣ILM(IndexLifecycleManagement)策略详解4️⃣Elasticsearch跨机房部署5️⃣快照与恢复功能详解6️⃣Elasticsearch快照恢复API参数详解7️⃣安全地删除快照仓库、快照8️⃣快照生命周期管理SLM(理论篇)9️⃣快照生命
- 【Elasticsearch】Elasticsearch 快照恢复 API 参数详解
大数据与AI实验室
#Elasticelasticsearch大数据搜索引擎全文检索快照快照恢复kibana
《Elasticsearch集群》系列,共包含以下文章:1️⃣冷热集群架构2️⃣合适的锅炒合适的菜:性能与成本平衡原理公式解析3️⃣ILM(IndexLifecycleManagement)策略详解4️⃣Elasticsearch跨机房部署5️⃣快照与恢复功能详解6️⃣Elasticsearch快照恢复API参数详解7️⃣安全地删除快照仓库、快照8️⃣快照生命周期管理SLM(理论篇)9️⃣快照生命
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,