- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版)
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版))工业相机使用YoloV8模型实现不同水果的检测识别工业相机通过YoloV8模型实现不同水果的检测识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入Yo
- halcon知识:常见三种模板匹配方法总结
无水先生
Halcon高级应用Halcon中级实践计算机视觉图像处理
目录一、形状匹配模板(Shape_Based)1.1形状匹配常见的有四种情况1.2四种匹配的特点1.3一般形状匹配模板shape_model1.4线性变形匹配模板planar_deformable_model1.5局部变形模板1.6比例缩放末班匹配二、灰度匹配模板(Gray-Value-Based)2.1创建模板方法如下2.2匹配搜索操作2.3模板调整操作三、组合模板匹配(Component-Ba
- RK3568平台(camera篇)opencv处理图像
嵌入式_笔记
瑞芯微opencv人工智能计算机视觉
一.颜色转换cv2.cvtColor()函数功能:将一幅图像从一个色彩空间转换到另一个色彩空间。函数原型:cv2.cvtColor(src,code,dst=None,dstCn=None)参数定义:src:要转换的源文件code,转换的色彩空间,在opencv中有超过150种颜色空间转换方法,但是经常用的只有BGR-灰度图和BGR-HSVBGR和灰度图的转换使用cv2.COLOR_BGR2GRA
- OpenCV(11)边缘检测、轮廓绘制、简单平移距离测量 C++
sam-zy
1.边缘检测原文链接:http://blog.sina.com.cn/s/blog_154bd48ae0102weuk.html边缘检测的一般步骤:1.滤波边缘检测的算法主要是基于图像的一阶和二阶导数。但是导数通常对噪声很敏感,所以首先要用滤波器降低噪声。常见的滤波方法主要是高斯滤波。2.增强增强边缘的基础是确定图像各点领域强度的变化值。增强算法可以将图像灰度点邻域强度值有显著变化的点凸现出来,在
- OpenCV图像梯度边缘轮廓处理
Jiamusi_night
opencv计算机视觉人工智能
一、梯度处理的sobel算子函数函数名:cv2.Sobel(src,ddepth,dx,dy,ksize=3,scale=1,delta=0,borderType=None)功能:用于计算图像梯度(gradient)的函数参数:src:输入图像,它应该是灰度图像。ddepth:输出图像的所需深度(数据类型)。通常,你可以使用-1来表示与输入图像相同的深度,或者使用如cv2.CV_64F等来指定特定
- CSS:filter(滤镜)属性
赛博末影猫
CSScsscss3前端filter属性
用途可以用于img标签,div标签等图像,背景,边框的调整常用属性1.灰度grayscale(),默认是0,100%就是黑白2.blux给图像设置高斯模糊的程度,radius值设定高斯模糊的程序,表示像素点合并到一起的程度不能使用百分比作为参数3.brightness调整图片的亮度,参数是百分比0表示全黑,默认是100%4.contract对比度表示明暗的差距,值越小明暗的差距越大;值越大,亮的部
- css filter属性
像牛奶却不是牛奶
CSSVuecss
这个filter属性是不是很神奇,我们来看看这个属性的特点://网站变灰~filter:grayscale(85%)saturate(80%);filter属性定义了元素(通常是)的可视效果(例如:模糊与饱和度)。grayscale将图像转换为灰度图像。值定义转换的比例。值为100%则完全转为灰度图像,值为0%图像无变化。值在0%到100%之间,则是效果的线性乘子。若未设置,值默认是0;satur
- 图片压缩
思思入扣
Android应用开发中三种常见的图片压缩方法,分别是:质量压缩法、比例压缩法(根据路径获取图片并压缩)和比例压缩法(根据Bitmap图片压缩)1.质量压缩原理:保持像素的前提下改变图片的位深及透明度,(即:通过算法抠掉(同化)了图片中的一些某个些点附近相近的像素),达到降低质量压缩文件大小的目的。注意:它其实只能实现对file的影响,对加载这个图片出来的bitmap内存是无法节省的,还是那么大。
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现水下鱼类识别(C#代码,UI界面版)
格林威
机器视觉工业相机数码相机YOLO深度学习计算机视觉人工智能
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现水下鱼类识别(C#代码,UI界面版)工业相机使用YoloV8模型实现水下鱼类识别工业相机通过YoloV8模型实现水下鱼类识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心
- 美图分布式Bitmap实践:Naix
PathonDiss
image.png大数据技术和应用系统目前已经在各个行业中发挥着巨大的作用,各种各样的开源技术也给大数据从业人员带来了很大的便利。Bitmap作为一种大数据需求下产生的计算体系,有着计算速度快、信息密度高、支持海量数据等众多优势。美图拥有海量用户数据,每天都有大量数据计算任务。而Bitmap技术能大幅度减少计算的开销,节省数据存储的成本,尽管有不少公司做过Bitmap的相关尝试,但是到目前为止还没
- OpenCV学习探秘之二 :数字图像的矩阵原理,OpenCV图像类与常用函数接口说明,及其常见操作核心技术详解
牵牛老人
opencv专栏opencv学习矩阵
一、图像处理基础概念1.1数字图像的矩阵如下图,这是我们看到的Lena的头像,但是计算机看来,这副图像只是一堆亮度各异的点。一副尺寸为M×N的图像可以用一个M×N的矩阵来表示,矩阵元素的值表示这个位置上的像素的亮度,一般来说像素值越大表示该点越亮。一般来说,灰度图用2维矩阵表示;彩色(多通道)图像用3维矩阵(M×N×3)表示。对于图像显示来说,目前大部分设备都是用无符号8位整数(类型为CV_8U)
- 轻松实现图片去色的实用工具
本文还有配套的精品资源,点击获取简介:图片去色工具是一款专注于将彩色图片转换为黑白图片的软件,通过灰度化处理来增添艺术感或特殊效果。该工具采用简单步骤,支持批量处理,易于操作,且兼容多种图片格式及操作系统。本篇文章深入探讨了图片颜色模型、灰度图像生成、批量处理功能和软件的版本特点,以及使用说明和艺术效果的创造,为读者提供全面的去色工具应用指导。1.图片颜色模型(RGB模型)在数字图像处理中,颜色模
- AndroidStudio 打印超长Log显示不全的解决方法
追梦小乐
比如有时候,在调试接口的时候,我们想把Bitmap转成Base64字符串,然后粘贴到网上的小工具转换为图片,看看是不是某一张图片,你会发现图片的Base64字符串超级长,而且还显示不全,下面是获取超长字符串的俩种方法:1、更改Log输出的最大长度(代码来自网上)publicstaticvoidi(Stringtag,Stringmsg){//信息太长,分段打印//因为String的length是字
- 图片位深转换终极指南:使用Python将任意位深图片转换为24位深
SuperBeen
Pythonpython开发语言嵌入式硬件
什么是图片位深?图片位深(BitDepth)指的是每个像素用于表示颜色的位数。常见的位深包括:1位:黑白二值图像8位:灰度图像(256级灰度)24位:真彩色图像(RGB各8位,约1677万色)32位:带透明通道的图像(RGBA)为什么需要转换为24位深?兼容性问题:许多软件和网页不支持非标准位深的图片显示异常:23位深图片在某些设备上可能出现色彩失真格式限制:JPEG等常见格式只支持8位/通道(2
- Android 图像编辑实战指南:从基础操作到进阶效果
Monkey-旭
androidjavabitmap图像编辑
在移动应用中,图像编辑功能已成为标配——社交APP需要裁剪头像,电商APP需要给商品图加水印,工具APP需要提供滤镜效果。看似简单的“裁剪”“缩放”背后,实则涉及Bitmap像素操作、内存管理、性能优化等核心技术。很多开发者在实现时会遇到“编辑后图片模糊”“操作时卡顿”“大图片编辑OOM”等问题,根源在于对图像编辑的底层逻辑理解不足。本文将从实际开发需求出发,系统讲解Android图像编辑的核心技
- 【1】计算机视觉方法(更新)
annaPresident
计算机视觉计算机视觉人工智能
1计算机是视觉的定义和任务计算机视觉(ComputerVision,CV)是人工智能领域的分支,旨在通过算法让计算机从图像或视频中提取信息、理解内容并做出决策。其核心任务是模拟人类视觉系统,实现场景理解、目标检测、图像分类等功能。2传统CV解决问题的步骤和方法步骤对图片、视频进行预处理,增强对比度,灰度化,变形等特征提取,边缘、角点、纹理等分割,通过阈值进行分割,分别处理形态学处理,通过膨胀、腐蚀
- 基于Matlab图像处理的水果分级系统
7zcode
图像处理开发matlab图像处理人工智能
本研究提出了一种基于图像处理技术的果实质量评估方法,旨在通过分析水果的颜色、形态特征和缺陷情况,自动化地对水果进行分级。通过使用MATLAB中的图像处理工具箱,首先将水果图像转换为HSV色彩空间,并提取色度信息,以计算水果的红色比率。随后,采用灰度转换、滤波和二值化处理来提取形态特征,并使用形态学操作评估水果的圆度和其他形状指标。此外,利用边缘检测技术分析水果表面的缺陷,进一步结合颜色和缺陷率来实
- 【OpenCV-Python】——图像处理基础&读写及显示图像&读写及播放视频&灰度图/彩色图/图像通道操作、运算
柯宝最帅
OpenCV学习pythonopencv图像处理
目录前言:1、读并显示图像、写图像2、读并播放视频、写视频3、操作灰度图和彩色图、图像通道操作、运算总结:前言:在Python中,OpenCV使用NumPy数组存储图像,Numpy是使用Python进行数组计算的软件包,提供强大的N维数组对象,支持复杂的广播功能(数组运算),集成了C/C++和Fortran代码工具,支持线性代数、傅里叶变换和随机数等特性,还可作为通用数据的高效多维容器,如在Ope
- 【c++】200*200 01灰度矩阵求所有的连通区域坐标集合
聿默
#c++c++矩阵深度优先
1.题目题目要求:给定一个200x200的01灰度矩阵,求所有的连通区域坐标集合。连通区域:相邻的1(上下左右,或者也可以包括对角线,这里通常使用4连通或8连通)。这里我们假设使用4连通(上下左右)即可,但题目没有明确,我们可以先按4连通实现,如果需要8连通可以稍作修改。2.算法思想算法思想:使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历每个连通区域。由于矩阵大小为200x200,DFS
- Redis常用数据类型和它们的底层数据结构
Redis常用数据类型有8种:String、Hash、List、Set、Zset、HyperLogLog、Bitmap和Geospatial,其中前面5种是最常用的。1、String(字符串)String是最基本的数据类型,每个键对应一个值,可以是文本、数字、二进制数据等。底层数据结构:使用SDS(SimpleDynamicString,简单动态字符串);解决了C语言字符串(以空字符\0结尾)的不
- OpenCV计算机视觉实战(17)——特征点检测详解
AI technophile
OpenCV项目实践指南计算机视觉opencv人工智能
OpenCV计算机视觉实战(17)——特征点检测详解0.前言1.Harris角点检测1.1应用场景1.2实现过程2.Shi-Tomasi算法2.1应用场景2.2实现过程3.亚像素级角点3.1应用场景3.2实现过程小结系列链接0.前言在计算机视觉中,角点(Corner,也称特征点)是图像中特征信息最丰富的点,对应周围像素灰度在两个正交方向均有显著变化。准确检测并定位角点,对于后续的图像配准、运动跟踪
- 早报|2022年8月25日
星问
早报|2022年8月25日星期四农历七月廿八1、国常会:允许地方“一城一策”运用信贷等政策,合理支持刚性和改善性住房需求。2、IOS版微信新功能灰度测试:聊天图片一次可发送99张,朋友圈在发布后支持修改可见范围。3、淘宝订单号码保护功能上线:收件人真实手机号全程保密。4、数据:上半年全球元宇宙游戏下载量达1.1亿,营收超6亿美元。5、打造新能源新服务体系,五菱充电无忧项目启动。6、拜登下令,对叙利
- opencv学习(视频读取)
蓝桉802
opencv学习人工智能
1.cv2.COLOR_BGR2GRAY和cv2.IMREAD_GRAYSCALE的区别在OpenCV中,cv2.COLOR_BGR2GRAY和cv2.IMREAD_GRAYSCALE都与图像灰度化有关,但它们的使用场景和作用机制有所不同:cv2.IMREAD_GRAYSCALE:这是一个读取图像时使用的标志参数作用:在读取图像的同时直接将其转换为灰度图使用方式:作为cv2.imread()函数的
- 机器视觉复习提纲
Woodstock69
计算机视觉
色度图色度图的定义:色度图是一种用于表示颜色特性的图表,它通常以二维的形式展示色调和饱和度的关系。色度图上的每个点代表一种颜色,通过色系数来定义。色彩特性的表示:亮度(Brightness):表示颜色的明暗程度,是无色彩的灰度值。色调(Hue):表示观察者感受到的主要色彩,是光的主要波长。饱和度(Saturation):表示色彩的纯度,即混入白光的量。刺激值和色系数:刺激值:通常用(X,Y,Z)表
- OpenCV —— color_matrix_numpy_mat_reshape
大魔王(已黑化)
visionopencvnumpy人工智能
️️️️Takeyourtime!️️️️个人主页:大魔王所属专栏:魔王的修炼之路–Computervision如果你觉得这篇文章对你有帮助,请在文章结尾处留下你的点赞和关注,支持一下博主。同时记得收藏✨这篇文章,方便以后重新阅读。文章目录颜色空间解释numpy与颜色空间图像的本质三种图像总结numpy本质Matnp.ndarray彩色图像灰度图像二值图像NumPy主要能干啥?re
- AI产品经理面试宝典第48天:产品设计与用户体验优化策略
TGITCIC
AI产品经理一线大厂面试题产品经理AI产品经理面试大模型产品经理面试大模型面试AI面试AI产品
1.用户体验分析与产品设计逻辑1.1问:如何通过用户反馈优化AI产品体验?答:建立反馈闭环机制:通过应用内评分、用户访谈、行为埋点三维度收集数据,例如某语音助手产品通过NLP分析用户纠错语句,发现"误唤醒"问题占比37%;优先级排序模型:采用Kano模型量化需求,将"语音响应延迟降低至200ms内"列为基本型需求,"方言识别"设为期望型需求;敏捷迭代验证:针对某智能客服产品,采用灰度发布策略,先在
- opencv-图像处理
芒果快进我嘴里
opencv计算机视觉人工智能
彩色图像HSV色调、饱和度、亮度gray是灰度图像颜色追踪(inRange的使用)hsv=cv.cvtColor(frame,cv.COLOR_BGR2HSV)lower_hsv=np.array([11,43,46])upper_hsv=np.array([25,255,255])mask=cv.inRange(hsv,lowerb=lower_hsv,upperb=upper_hsv)inRa
- 顶层设计:支持单元化、灰度化的应用架构
一、顶层目标业务连续性:任何单元故障不影响整体弹性伸缩:根据业务流量横向扩展灵活灰度:任何发布都可逐步平滑上线成本可控:单元化带来的资源冗余最小二、核心理念设计目标核心理念单元化垂直拆分,分而治之,地域/业务维度隔离灰度化流量切分,功能开关,逐步发布三、设计步骤Step1.顶层架构分层设计1.接入层(Gateway/APIGateway)支持单元路由与灰度路由负载均衡+灰度规则(按用户ID、流量比
- 初识opencv
文章目录1.什么opencv,它的优势点2.opencv安装和环境配置3.了解数字图像的基本概念:像素、彩色图像、灰度图像、二值图像、图像算数操作4.练习numpy中array的基本操作5.练习图像的加载、保存、以及算术操作参考文献1.什么opencv,它的优势点OpenCV是Intel®开源计算机视觉库。它由一系列C函数和少量C++类构成,实现了图像处理和计算机视觉方面的很多通用算法。OpenC
- MFC数字图像处理24位图转8位图 等四种图像色彩转换方式
CurtainSystem
数字图像处理数字图像处理图像色彩转换24位图转8位图
一、实验主要思路和基本操作本实验主要探究8位图和24位图的颜色转换。8位图具有调色板,调色板中有对应的256种不同的颜色,每种颜色所含的RGB值都不一样。24位图没有调色板,RGB三个颜色分量分别都有0-255可选择,属于真彩色图像。其中,两种不同位数的图形都有彩色图像和灰度图像两种,灰度图像中每个像素的颜色分量,R、G、值都一样。所以本实验核心分为两点:了解颜色的RGB组合和学会调色板的使用调色
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那