Prime Ring Problem
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
这是一道dfs(深搜)题目(废话。。), 题意就是求一个素数环,使得相邻两个数之和均为素数, 当然第一个与最后一个相加也要是素数,因为它是环嘛。 言归正传, 这道题解法就是建立两个数组,一个存数,一个用来判断某个数是否使用过, 还需要一个辅助数组,不能每一次都判断两个数相加的和是否为素数,每次都用函数算一遍,肯定超时的啦, 所以建立一个数组把前40的数字是否为素数状态存储起来,需要判断的时候,只需要读相应下标所对应的数就可以了, 每次搜索都遍历一遍,当然剪枝也减一下, 最后注意一下格式问题,最后一个数后面木有空格= =。
#include <iostream>
using namespace std;
// 该数组用来存储,数组下标数字是否为素数状态,1则是素数
int prim[]={0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0};
int arr[21],brr[21],n;
void dfs(int js)
{
int i;
// 剪枝,计数器不能大于输入的n
if(js>n) return;
// 若相等,则输出,注意输出格式
if(js==n)
{
for(i=0;i<n-1;++i)
cout<<brr[i]<<" ";
cout<<brr[n-1]<<endl;
return;
}
for(i=2;i<=n;++i)
{
if(arr[i]==1) continue;
if(js+1==n)
{
if(prim[brr[js-1]+i]==1 && prim[1+i]==1)
{
brr[js]=i;
arr[i]=1;
dfs(js+1);
arr[i]=0;
}
}
else
{
if(prim[brr[js-1]+i]==1)
{
brr[js]=i;
arr[i]=1;
dfs(js+1);
arr[i]=0;
}
}
}
return;
}
int main()
{
int xh=1;
while(cin>>n)
{
// 初始化两个数组
memset(brr,0,sizeof(brr));
memset(arr,0,sizeof(arr));
arr[0]=brr[0]=1;
cout<<"Case "<<xh<<":"<<endl;
dfs(1);
cout<<endl;
++xh;
}
return 0;
}