该SMO函数的伪代码:
创建一个alpha向量并将其初始化为O 向量
当迭代次数小于最大迭代次数时(外循环)
对数据集中的每个数据向量(内循环):
如果该数据向量可以被优化:
如果所有向量都没被优化,增加迭代数目,继续下一次循环
Python源码:
from numpy import * def loadDataSet(fileName): dataMat = []; labelMat = [] fr = open(fileName) for line in fr.readlines(): lineArr = line.strip().split('\t') dataMat.append([float(lineArr[0]), float(lineArr[1])]) labelMat.append(float(lineArr[2])) return dataMat,labelMat def selectJrand(i,m): #选择两个不同的alpha值,如果一个选为第alpha[i],则另一个alpha值选择除了i随机的一个 j=i #we want to select any J not equal to i while (j==i): j = int(random.uniform(0,m)) return j def clipAlpha(aj,H,L): #由于aj的取值范围的限制,H为上限,L为下限 if aj > H: aj = H if L > aj: aj = L return aj ''' 功能:简单版的SMO 输入参数: dataMatIn:数据集 classLabels:类别标签 C:控制参数(惩罚参数) toler:容错率 maxIter:最大的循环次数 输出参数: b:f(x)中的b值 alpha:拉格朗日乘子 ''' def smoSimple(dataMatIn, classLabels, C, toler, maxIter): dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose() b = 0; m,n = shape(dataMatrix) #将多个列表和输人参数转换成为numpy矩阵,这样就可以简化很多数学处理操作 alphas = mat(zeros((m,1))) iter = 0 #初始化遍历次数 while (iter < maxIter): #只有在所有数据集上遍历maxIter次,且不再发生任何alpha修改之后,程序才会停止并退出while循环 alphaPairsChanged = 0 #记录alpha是否巳经进行优化 for i in range(m): fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b #预测的类别 Ei = fXi - float(labelMat[i]) #Ei为计算误差;if checks if an example violates KKT conditions #一旦alphas等于0或C,那么它们就巳经在“边界”上了,因而不再能够减小或增大,因此也就不值得再对它们进行优化了 if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)): j = selectJrand(i,m) #随机选择第二个alpha值 fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b Ej = fXj - float(labelMat[j]) #计算第二个alpha值的误差 alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy(); if (labelMat[i] != labelMat[j]): #当y1和y2异号,计算alpha的取值范围 L = max(0, alphas[j] - alphas[i]) H = min(C, C + alphas[j] - alphas[i]) else: #当y1和y2同号,计算alpha的取值范围 L = max(0, alphas[j] + alphas[i] - C) H = min(C, alphas[j] + alphas[i]) if L==H: print "i:%d, L==H" %(i); continue #eta = K11+K22-2*K12,也是f(x)的二阶导数 eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T if eta >= 0: print "i:%d, eta>=0" %(i); continue alphas[j] -= labelMat[j]*(Ei - Ej)/eta #利用公式更新alpha[j] alphas[j] = clipAlpha(alphas[j],H,L) if (abs(alphas[j] - alphaJold) < 0.00001): print "i:%d, j not moving enough" %(i); continue alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j #the update is in the oppostie direction b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T if (0 < alphas[i]) and (C > alphas[i]): b = b1 #把新值b给原来的旧值b,为了后续的循环 elif (0 < alphas[j]) and (C > alphas[j]): b = b2 else: b = (b1 + b2)/2.0 alphaPairsChanged += 1 print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged) ## else: ## print "i: %d" %(i) if (alphaPairsChanged == 0): iter += 1 #检査alpha值是否做了更新,如果有更新则将iter为0后继续运行程序 else: iter = 0 print "iteration number: %d" % iter return b,alphas
dataArr,labelArr = loadDataSet('testSet.txt') b,alphas = smoSimple(dataArr,labelArr,0.6,0.001,40)
加上求解w的函数(利用alphas)
def calcWs(alphas,dataArr,classLabels): X = mat(dataArr); labelMat = mat(classLabels).transpose() m,n = shape(X) w = zeros((n,1)) for i in range(m): w += multiply(alphas[i]*labelMat[i],X[i,:].T) return w
加上画图函数:
def plotfig_SVM(xMat,yMat,ws,b,alphas): xMat = mat(xMat) yMat = mat(yMat) b = array(b)[0] #b原来是矩阵,先转为数组类型后其数组大小为(1,1),所以后面加[0],变为(1,) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xMat[:,0].flatten().A[0],xMat[:,1].flatten().A[0]) #注意flatten的用法 x = arange(-1.0,10.0,0.1) #x最大值,最小值根据原数据集dataArr[:,0]的大小而定 y =(-b-ws[0][0]*x)/ws[1][0] #根据x.w + b = 0 得到,其式子展开为w0.x1 + w1.x2 + b = 0,x2就是y值 ax.plot(x,y) for i in range(100): #找到支持向量,并在图中标红 if alphas[i]>0.0: ax.plot(xMat[i,0],xMat[i,1],'ro') plt.show()
ws = calcWs(alphas,dataArr,labelArr) plotfig_SVM(dataArr,labelArr,ws,b,alphas)
Platt SMO 算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替: 一种方式是在所有数据集上进行单遍扫描, 另一种方式则是在非边界alpha中实现单遍扫描。而所谓非边界alpha是指的就是那些不等于边界0或C的alpha值。对整个数据集的扫描相当容易,而实现非边界alpha值的扫描时,首先需要建立这些alpha值的列表,然后再对这个表进行遍历。同时,该步骤会跳过那些已知的不会改变的alpha值 。
Python代码:
def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space m,n = shape(X) K = mat(zeros((m,1))) if kTup[0]=='lin': K = X * A.T #linear kernel elif kTup[0]=='rbf': for j in range(m): deltaRow = X[j,:] - A K[j] = deltaRow*deltaRow.T K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab else: raise NameError('Houston We Have a Problem -- \ That Kernel is not recognized') return K class optStruct: #建立一个数据结构来保存所有的重要值 def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters self.X = dataMatIn self.labelMat = classLabels self.C = C self.tol = toler self.m = shape(dataMatIn)[0] self.alphas = mat(zeros((self.m,1))) self.b = 0 self.eCache = mat(zeros((self.m,2))) #first column is valid flag(是否有效的标志位),第二列是实际的E值(误差值) self.K = mat(zeros((self.m,self.m))) for i in range(self.m): self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) def calcEk(oS, k): fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b) Ek = fXk - float(oS.labelMat[k]) return Ek def selectJ(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej maxK = -1; maxDeltaE = 0; Ej = 0 #选择第二个alhpa值以保证在每次优化中采用最大步长 oS.eCache[i] = [1,Ei] #set valid(将即将使用的Ei值设为有效) #choose the alpha that gives the maximum delta E validEcacheList = nonzero(oS.eCache[:,0].A)[0] if (len(validEcacheList)) > 1: #选择其中使改变最大的那个E值 for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E if k == i: continue #don't calc for i, waste of time Ek = calcEk(oS, k) deltaE = abs(Ei - Ek) if (deltaE > maxDeltaE): maxK = k; maxDeltaE = deltaE; Ej = Ek return maxK, Ej else: #in this case (first time around) we don't have any valid eCache values j = selectJrand(i, oS.m) Ej = calcEk(oS, j) return j, Ej def updateEk(oS, k):#after any alpha has changed update the new value in the cache Ek = calcEk(oS, k) oS.eCache[k] = [1,Ek] ''' 功能:和smoSimple函数一样(包括选择第二个乘子) ''' def innerL(i, oS): Ei = calcEk(oS, i) if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy(); if (oS.labelMat[i] != oS.labelMat[j]): #当y1和y2异号,计算alpha[j]的取值范围 L = max(0, oS.alphas[j] - oS.alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: #当y1和y2同号,计算alpha[j]的取值范围 L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) if L==H: print "L==H"; return 0 eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel if eta >= 0: print "eta>=0"; return 0 oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) updateEk(oS, j) #added this for the Ecache if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0 oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j] b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j] if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2 else: oS.b = (b1 + b2)/2.0 return 1 else: return 0 ''' 功能:外循环(选择第一个乘子) ''' def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup) #建立一个数据结构来保存所有的重要值 iter = 0 entireSet = True; alphaPairsChanged = 0 #alpha改变标志位 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): alphaPairsChanged = 0 if entireSet: #go over all 遍历整个数据集 for i in range(oS.m): alphaPairsChanged += innerL(i,oS) print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged) iter += 1 else:#go over non-bound (railed) alphas nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] for i in nonBoundIs: alphaPairsChanged += innerL(i,oS) print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged) iter += 1 if entireSet: entireSet = False #toggle entire set loop elif (alphaPairsChanged == 0): entireSet = True print "iteration number: %d" % iter return oS.b,oS.alphas
dataArr,labelArr = loadDataSet('testSet.txt') b,alphas = smoP(dataArr,labelArr,0.6,0.001,40)
ws = calcWs(alphas,dataArr,labelArr) plotfig_SVM(dataArr,labelArr,ws,b,alphas)
画图:
添加函数:
'''
功能:利用核函数进行分类
'''
def testRbf(k1=1.3):
dataArr,labelArr = loadDataSet('testSetRBF.txt')
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
svInd=nonzero(alphas.A>0)[0] #找到非零的alphas值,从而得到了所需要的支持向量
sVs=datMat[svInd] #get matrix of only support vectors
labelSV = labelMat[svInd];#得到了支持向量的类别标签,
print "there are %d Support Vectors" % shape(sVs)[0]
m,n = shape(datMat)
predict_label0_index = []
predict_label1_index = []
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) #只利用支持向量就可进行分类
predict = array(kernelEval.T * multiply(labelSV,alphas[svInd]) + b) #计算预测值
if sign(predict) == -1: #如果预测的标签是-1,则保存一个列表中
predict_label0_index.append(i)
elif sign(predict) == 1: #如果预测的标签是-1,则保存另一个列表中
predict_label1_index.append(i)
if sign(predict)!=sign(labelArr[i]): errorCount += 1 #利用sign函数,判断预测是否正确
print "the training error rate is: %f" % (float(errorCount)/m)
plotfig_kernel(dataArr,predict_label0_index,predict_label1_index,alphas)#画图
dataArr,labelArr = loadDataSet('testSetRBF2.txt') #再用另一个数据集进行测试,后面代码和前面一样
errorCount = 0
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the test error rate is: %f" % (float(errorCount)/m)
''' 功能:画利用核函数进行分类的图 ''' def plotfig_kernel(xMat,predict_label0_index,predict_label1_index,alphas): fig = plt.figure() ax = fig.add_subplot(111) for i in predict_label0_index: #预测标签为-1的标为红色三角形 ax.plot(xMat[i][0],xMat[i][1],'r^') for i in predict_label1_index: #预测标签为1的标为蓝色正方形 ax.plot(xMat[i][0],xMat[i][1],'bs') plt.show()
testRbf()
说明:
为什么核转换函数只用支持向量?
因为根据公式:,其中K( xi , x )为核函数,当xi不是支持向量时,其前面的ai为0,所以不是支持向量的元素不用计算,这样可以大大降低计算量。
参考文章:
1、支持向量机通俗导论(理解SVM的三层境界)
2、支持向量机(五)SMO算法
3、支持向量机(SVM),SMO算法原理及源代码剖析
4、Stanford机器学习---第八讲. 支持向量机SVM
5、机器学习实战 李锐等译