LeetCode —— Palindrome Partition II

链接:http://leetcode.com/onlinejudge#question_132

原题:Palindrome Partitioning II

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

解题思路:

我是按照动态规划思路解的。

考虑s长度为i的子串s[0~i-1]最少的分割段数为minSegs[i],那么最小的cut数就是minSegs[i]-1,显然minSegs[0] = 0, minSegs[1] = 1。

先在考虑字符s[i]加入改子串中,只有两种情况:

1)直接在s[i-1]和s[i]之间切一刀,那么 所得的段数为minSegs[i] + 1

2)和子串s[0~i-1]分段的最后一段合并为一个新回文串(如果可以合并的话),记最后一段的长度为length,那么所得段数为

minSegs[i-1-length] +1。现在考虑s[0~i-1]分段的最后一段,显然这一段是一个回文串,所以我们要记录以s[i-1]结尾的

所有回文串长度,那么只要检查 s[i-1-length] == s[i],就可以并上s[i]形成新的子串。

所以整个时间复杂度是O(n^2)



class Solution {
public:
    int minCut(string s) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        if (s.size() < 2)
            return 0;
        int length = s.size();
        int *minSegs = new int[length+1];
        minSegs[0] = 0;
        minSegs[1] = 1;
        int **dp = new int*[2];
        dp[0] = new int[length+2];
        dp[1] = new int[length+2];
        dp[0][0] = dp[1][0] = 0;
        dp[0][1] = dp[1][1] = 1;
        dp[0][2] = -1;
        
        int cur = 0;
        int pre = 1;
        for (int i=1; i<s.size(); i++) {
            int cur = i % 2;
            int pre = (i +1) % 2;
            minSegs[i+1] = minSegs[i] + 1;
            int n = 1;
            for (int j=0; dp[pre][j] != -1; j++) {
                int left = i-1-dp[pre][j];
                if (left>=0 && s[left]==s[i]) {
                    dp[cur][++n] = dp[pre][j] + 2;
                    if (minSegs[left] + 1 < minSegs[i+1])
                        minSegs[i+1] = minSegs[left] + 1;
                }
            }
            dp[cur][++n] = -1;
        }
        
        int min = minSegs[s.size()] - 1;
        delete []minSegs;
        return min;
    }
};




你可能感兴趣的:(LeetCode,动态规划)