- xgboost原理
茶尽
阅读XGBoost与BoostedTree基学习器:CART每个叶子节点上面有一个分数不够厉害,所以找一个更强的模型treeensemble对每个样本的预测结果是每棵树预测分数的和目标函数采用boosting(additivetraining)方法,每一次都加入一个新的函数。依赖每个数据点上的误差函数的一阶导数和二阶导(区别于GBDT)。树的复杂度复杂度包含了一棵树里面的叶子个数和输出分数的L2模
- 【Elasticsearch】自定义评分检索
G皮T
#Elasticelasticsearch大数据自定义评分查询检索_score搜索引擎
自定义评分检索1.自定义评分2.为什么需要自定义评分3.搜索结果相关度4.影响相关度评分的查询子句5.控制相关度评分的方法5.1FunctionScoreQuery5.1.1基础查询部分5.1.2评分函数部分(functions数组)第一个函数:品牌加权第二个函数:销量因子第三个函数:时间衰减5.1.3评分组合方式score_modeboost_mode5.1.4整体效果5.2使用Boosting
- 【集成学习】Bagging、Boosting、Stacking算法详解
文章目录1.相关算法详解:2.算法详细解释:2.1Bagging:2.2Boosting:2.3Stacking:2.4K-foldMulti-levelStacking:集成学习(EnsembleLearning)是一种通过结合多个模型的预测结果来提高整体预测性能的技术。它通过将多个学习器的结果集成起来,使得最终的模型性能更强,具有更好的泛化能力。常见的集成学习框架包括:Bagging、Boos
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- Boosting:从理论到实践——集成学习中的偏差征服者
大千AI助手
人工智能Python#OTHER集成学习boosting机器学习tree人工智能ML
核心定位:一种通过串行训练弱学习器、自适应调整数据权重,将多个弱模型组合成强模型的集成学习框架,专注于降低预测偏差。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、Boosting的本质目标:将一系列弱学习器(仅比随机猜测略好,如浅层决策树)组合成强学习器核心思想:错误驱动学习:后续模型重点修正
- GBDT:梯度提升决策树——集成学习中的预测利器
大千AI助手
人工智能Python#OTHER决策树集成学习算法GBDT梯度提升人工智能机器学习
核心定位:一种通过串行集成弱学习器(决策树)、以梯度下降方式逐步逼近目标函数的机器学习算法,在结构化数据预测任务中表现出色。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、GBDT是什么?全称:GradientBoostingDecisionTree(梯度提升决策树)本质:Boosting集成学
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- 机器学习15-XGBoost
吹风看太阳
机器学习机器人人工智能
XGBOOST学习笔记一、引言在机器学习的集成学习算法中,XGBoost(eXtremeGradientBoosting)凭借其高效性、可扩展性和卓越的性能,成为数据科学竞赛和工业界应用的热门选择。XGBoost本质上是一种基于梯度提升框架(GradientBoostingFramework)的机器学习算法,它通过不断拟合残差来构建多个弱学习器(通常是决策树),并将这些弱学习器进行累加,从而形成一
- LightGBM 与 XGBoost 深度解析:从基础原理到实战优化
爱看烟花的码农
ML集成学习机器学习人工智能
LightGBM与XGBoost深度解析:从基础原理到实战优化引言梯度提升机(GradientBoostingMachine,GBM)及其衍生算法,如XGBoost和LightGBM,是当今机器学习领域中应用最为广泛且效果卓越的监督学习模型之一。然而,许多学习者在初次接触这些算法时,往往对其复杂的内部机制感到困惑,难以形成深刻理解,常常止步于对算法流程的死记硬背。本教程旨在深入浅出地剖析GBDT(
- 【机器学习】机器学习重要分支——集成学习:理论、算法与实践
E绵绵
Everything机器学习集成学习算法pythonAIGC人工智能应用
文章目录引言第一章集成学习的基本概念1.1什么是集成学习1.2集成学习的类型1.3集成学习的优势第二章集成学习的核心算法2.1Bagging方法2.2Boosting方法2.3Stacking方法第三章集成学习的应用实例3.1图像分类3.2文本分类第四章集成学习的未来发展与挑战4.1模型多样性与集成策略4.2大规模数据与计算资源4.3集成学习的解释性与可视化结论引言集成学习(EnsembleLea
- python简单的预测模型_python简单预测模型
HOWARD ZHOU
python简单的预测模型
python简单预测模型步骤1:导入所需的库,读取测试和训练数据集。#导入pandas、numpy包,导入LabelEncoder、random、RandomForestClassifier、GradientBoostingClassifier函数importpandasaspdimportnumpyasnpfromsklearn.preprocessingimportLabelEncoderim
- 机器学习之集成学习算法
文柏AI共享
机器学习集成学习算法
集成学习算法一概述二Bagging方法2.1思想2.2代表算法2.3API三Boosting方法3.1AdaBoost3.1.1思想3.1.2API3.2GBDT3.2.1思想3.2.2API3.3XGBoost3.3.1思想3.3.2API机器学习算法很多,今天和大家聊一个很强悍的算法-集成学习算法,基本上是处理复杂问题的首选.话不多说,直奔主题.一概述集成学习(EnsembleLearning
- 第二十七课:手搓梯度提升树
顽强卖力
数据分析python算法数据挖掘大数据
Python实现梯度提升树(GBDT):让决策树"代代进化"的魔法梯度提升树就像一群小树苗在接力成长,每棵新树都专注于前辈们犯过的错误,最终长成一片预测能力强大的森林。下面我用Python展示这个强大的算法。准备工具包fromsklearn.ensembleimportGradientBoostingRegressor#回归问题用fromsklearn.ensembleimportGradient
- 机器学习与深度学习14-集成学习
目录前文回顾1.集成学习的定义2.集成学习中的多样性3.集成学习中的Bagging和Boosting4.集成学习中常见的基本算法5.什么是随机森林6.AdaBoost算法的工作原理7.如何选择集成学习中的基础学习器或弱分类器8.集成学习中常见的组合策略9.集成学习中袋外误差和交叉验证的作用10.集成学习的优势和局限性前文回顾上一篇文章链接:地址1.集成学习的定义集成学习(EnsembleLearn
- 秒懂Boosting和Bagging算法
来自于狂人
boosting算法集成学习
一、故事开头:考试现场的启示想象一下期末考试现场:Bagging班的学生每人独立做题,最后举手投票决定答案:“这道题选A的举手!”Boosting组的学霸们却玩起接力赛:“你先做第一题→我检查后改第二题→她再优化第三题”这就是机器学习中两种经典集成学习策略的生存之道!二、Bagging:民主投票的"乌合之众"逆袭战1.核心思想Bootstrap抽样:让每个模型在随机子数据集上训练(就像蒙着眼睛抓阄
- CatBoost:高效智能的梯度提升算法
亿只小灿灿
人工智能Python人工智能机器学习CatBoost
一、CatBoost概述CatBoost,全称“CategoricalBoosting”,顾名思义,其核心优势在于对类别型特征的处理。传统的梯度提升算法(如XGBoost、LightGBM)在处理类别特征时,通常需要先进行编码转换,如独热编码、标签编码等,但这些编码方式可能会引入噪声或导致模型过拟合。而CatBoost通过独特的算法设计,能够直接高效地处理类别特征,减少了数据预处理的繁琐步骤,同时
- LightGBM学习
亿只小灿灿
Python人工智能LightGBM
LightGBM是近年来在数据科学和机器学习领域备受瞩目的梯度提升框架,凭借高效的内存使用和极快的训练速度,在Kaggle竞赛和工业落地场景中大放异彩。接下来我将从它的技术原理、核心优势出发,结合丰富的示例代码,为你详细介绍这个强大的工具。一、LightGBM概述LightGBM(LightGradientBoostingMachine)由微软开发并开源,是基于梯度提升决策树(GBDT)算法的高效
- opencv八种跟踪算法
昊昊好好昊
opencvopencv算法
这八种算法包括:BOOSTINGTracker:和Haarcascades(AdaBoost)背后所用的机器学习算法相同,但是距其诞生已有十多年了。这一追踪器速度较慢,并且表现不好,但是作为元老还是有必要提及的。(最低支持OpenCV3.0.0)MILTracker:比上一个追踪器更精确,但是失败率比较高。(最低支持OpenCV3.0.0)KCFTracker:比BOOSTING和MIL都快,但是
- 集成思想在算法(目标检测)中的体现
pang企鹅
人工智能计算机视觉目标检测数学建模
集成思想在算法(目标检测)中的体现概述集成思想与分治思想共同构成了目标检测算法的两大核心设计哲学。两者的联系与区别在于:联系与区别维度分治思想集成思想核心思路垂直拆分问题水平协作优化执行路径独立求解→结果合并并行学习→协同决策优势领域复杂问题简化模型性能提升集成维度模型级集成,通过组合多个独立训练的检测模型,利用其互补性提升性能。典型方法:Bagging策略:多模型投票决策Boosting策略:迭
- 机器学习(11)——xgboost
追逐☞
机器学习机器学习人工智能
文章目录1.算法背景和动机1.1.提升算法(Boosting)1.2.XGBoost的改进动机2.算法基础3.核心创新3.4稀疏感知算法4.系统优化4.1列块(ColumnBlock)4.2缓存感知访问4.3外存计算5.算法细节5.1树生长策略5.2特征重要性评估5.3自定义目标函数6.关键参数详解6.1通用参数6.2提升器参数6.3学习任务参数7.与LightGBM对比8.实践建议9.代码示例1
- 机器学习——集成学习基础
m0_62060781
机器学习集成学习人工智能
一、鸢尾花数据训练模型1.使用鸢尾花数据分别训练集成模型:AdaBoost模型,GradientBoosting模型2.对别两个集成模型的准确率以及报告3.两个模型的预测结果进行可视化需要进行降维处理,两个图像显示在同一个坐标系中代码展示:fromsklearn.datasetsimportload_irisimportnumpyasnpimportpandasaspdimportmatplotl
- 【随机森林完全攻略】从原理到实战学习总结
大数据新兵蛋子
随机森林学习算法
一、随机森林核心:为什么它是“机器学习六边形战士”?1.集成算法的魔法:三个臭皮匠顶个诸葛亮装袋法(Bagging)核心:并行训练N棵决策树(基评估器),通过**多数表决(分类)或平均(回归)**输出结果,降低方差,专治决策树过拟合!例子:25棵树投票判断邮件是否为垃圾邮件,超过13棵树判断错误才会集成错误,错误率从单树20%暴跌至0.0369%!与Boosting的区别:维度随机森林(Baggi
- VSCode command management tool, shortcut command, command management tool
三岁时超帅哦
vscodeCommandManageQuickCommandsEfficiencyPlugins
RevolutionaryEfficiencyBoostingTool:VSCodeCommandManagerSayGoodbyetoRepetition,EmbraceEfficiency-QuickCommanderMakesYourDevelopmentWorkflowSmoothasSilkAreyoutiredofrepeatedlytypingthesamecommands?Doyo
- LightGBM算法核心原理与技术特性深度解析
彩旗工作室
人工智能算法机器学习人工智能
LightGBM(LightGradientBoostingMachine)是微软团队于2017年提出的高效梯度提升框架,专为大规模数据和高维特征场景设计。以下从核心原理、技术创新、性能对比及应用场景等维度展开理论性分析。一、核心原理与技术创新梯度提升框架的优化LightGBM基于梯度提升决策树(GBDT),通过迭代训练弱分类器(决策树)并加权组合,逐步修正预测误差。其核心改进在于对传统GBDT的
- 概率预测之NGBoost(Natural Gradient Boosting)回归和分位数(Quantile Regression)回归
人工都不智能了
boosting回归kotlin
概率预测之NGBoost(NaturalGradientBoosting)回归和线性分位数回归NGBoostNGBoost超参数解释NGBoost.fitscore(X,Y)staged_predict(X)feature_importances_pred_dist方法来获取概率分布对象分位数回归(QuantileRegression)smf.quantreg对多变量数据进行分位数回归分析概率预测
- 文件内容课堂总结
2301_79975534
人工智能
集成学习通过构建并结合多个学习器完成任务,结合策略有简单平均法和加权平均法,结果可通过投票法产生。集成学习分类包括:Bagging:个体学习器无强依赖关系,可并行生成,代表为随机森林。随机森林具有处理高维数据、给出特征重要性、并行化快、可可视化等优点。Boosting:个体学习器有强依赖关系,需串行生成(如AdaBoost),通过调整数据权重提升模型性能。Stacking:聚合多个分类或回归模型,
- gbdt总结
爱学习的uu
机器学习决策树人工智能数据挖掘
GBDTGBDT被写作梯度提升机器(GradientBoostingMachine,GBM),它融合了Bagging与Boosting的思想GBDT中自然也包含Boosting三要素:损失函数(,):用以衡量模型预测结果与真实结果的差异弱评估器():(一般为)决策树,不同的boosting算法使用不同的建树过程综合集成结果():即集成算法具体如何输出集成结果GBDT与ADABOOST的不同:1.弱
- 【机器学习|学习笔记】提升回归树(Gradient Boosting Regression Trees,GBRT)的起源、发展、应用与前景,附代码实现示例。(二)
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记神经网络回归boosting人工智能
【机器学习|学习笔记】提升回归树(GradientBoostingRegressionTrees,GBRT)的起源、发展、应用与前景,附代码实现示例。(二)【机器学习|学习笔记】提升回归树(GradientBoostingRegressionTrees,GBRT)的起源、发展、应用与前景,附代码实现示例。(二)文章目录【机器学习|学习笔记】提升回归树(GradientBoostingRegress
- 【python】基于nc数据文件实现XGBoost的多分类
傻傻虎虎
机器学习python分类机器学习xgboost
基于nc数据文件实现XGBoost的多分类XGBoost介绍库下载nc文件介绍模型搭建nc文件数据读取XGBoost的使用模型源码内容XGBoost介绍XGBoost(ExtremeGradientBoosting)是一种基于梯度提升决策树的机器学习算法。它是一种高效、灵活和可扩展的技术,而且在许多机器学习竞赛中都表现出色。该算法的主要思想是通过构建多个决策树模型来逐步改进预测结果,每一次迭代都会
- 机器学习: LightGBM模型(优化版)——高效且强大的树形模型
秀儿还能再秀
机器学习决策树LightBMGGBDT
LightGBM(LightGradientBoostingMachine)是一种基于梯度提升决策树(GBDT)的框架,由微软提出。它具有高效的训练速度、低内存占用、支持并行和GPU加速等特点,非常适合大规模数据的训练任务,尤其在分类和回归任务中表现突出。LightGBM的核心原理可以从以下几个方面来理解:LightGBM模型特点(一)基于梯度提升的树模型LightGBM是一个梯度提升决策树(GB
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&