Given a set of n items, each with a weight w[i] and a value v[i], determine a way to choose the items into a knapsack so that the total weight is less than or equal to a given limit B and the total value is as large as possible. Find the maximum total value. (Note that each item can be only chosen once).
The first line contains the integer T indicating to the number of test cases.
For each test case, the first line contains the integers n and B.
Following n lines provide the information of each item.
The i-th line contains the weight w[i] and the value v[i] of the i-th item respectively.
1 <= number of test cases <= 100
1 <= n <= 500
1 <= B, w[i] <= 1000000000
1 <= v[1]+v[2]+...+v[n] <= 5000
All the inputs are integers.
For each test case, output the maximum value.
题意:给你n个物品,你的背包的重量限制是B,输入n个w[i]重量 v[i]价值。求不超过B的情况下,背包内物品的价格最大。
思路:由于B的上限较大,转化下思路就好了。设置dp[i][j]为前i个物品获得价值为j时所需的最小容量。
状态转移 dp[i][j] = min(dp[i-1][j], dp[i][j-val[i]] + w[i])。优化掉一维就可以了。
ac-code:
#include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <algorithm> #include <queue> #include <stack> #include <map> #include <vector> #define INF 0x3f3f3f3f #define eps 1e-8 #define MAXN (500+10) #define MAXM (100000) #define Ri(a) scanf("%d", &a) #define Rl(a) scanf("%lld", &a) #define Rf(a) scanf("%lf", &a) #define Rs(a) scanf("%s", a) #define Pi(a) printf("%d\n", (a)) #define Pf(a) printf("%.2lf\n", (a)) #define Pl(a) printf("%lld\n", (a)) #define Ps(a) printf("%s\n", (a)) #define W(a) while(a--) #define CLR(a, b) memset(a, (b), sizeof(a)) #define MOD 1000000007 #define LL long long #define lson o<<1, l, mid #define rson o<<1|1, mid+1, r #define ll o<<1 #define rr o<<1|1 #define PI acos(-1.0) using namespace std; int dp[10000]; int w[MAXN], v[MAXN]; int main() { int t;Ri(t); W(t) { int n, W, sumv; scanf("%d%d",&n, &W); sumv=0; CLR(dp, INF); dp[0]=0; for(int i=0;i<n;i++) { scanf("%d%d",&w[i],&v[i]); sumv+=v[i]; } for(int i=0;i<n;i++) for(int j=sumv;j>=v[i];j--) dp[j]=min(dp[j],dp[j-v[i]]+w[i]); for(int j=sumv;j>=0;j--) { if(dp[j]<=W) { printf("%d\n",j); break; } } } return 0; }