在 codeproject 上面找到了个库 勉强可以用了。。。
//unzip.cpp #include <windows.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <tchar.h> #include "unzip.h" // THIS FILE is almost entirely based upon code by Jean-loup Gailly // and Mark Adler. It has been modified by Lucian Wischik. // The modifications were: incorporate the bugfixes of 1.1.4, allow // unzipping to/from handles/pipes/files/memory, encryption, unicode, // a windowsish api, and putting everything into a single .cpp file. // The original code may be found at http://www.gzip.org/zlib/ // The original copyright text follows. // // // // zlib.h -- interface of the 'zlib' general purpose compression library // version 1.1.3, July 9th, 1998 // // Copyright (C) 1995-1998 Jean-loup Gailly and Mark Adler // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // // Jean-loup Gailly Mark Adler // [email protected] [email protected] // // // The data format used by the zlib library is described by RFCs (Request for // Comments) 1950 to 1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt // (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format). // // // The 'zlib' compression library provides in-memory compression and // decompression functions, including integrity checks of the uncompressed // data. This version of the library supports only one compression method // (deflation) but other algorithms will be added later and will have the same // stream interface. // // Compression can be done in a single step if the buffers are large // enough (for example if an input file is mmap'ed), or can be done by // repeated calls of the compression function. In the latter case, the // application must provide more input and/or consume the output // (providing more output space) before each call. // // The library also supports reading and writing files in gzip (.gz) format // with an interface similar to that of stdio. // // The library does not install any signal handler. The decoder checks // the consistency of the compressed data, so the library should never // crash even in case of corrupted input. // // for more info about .ZIP format, see ftp://ftp.cdrom.com/pub/infozip/doc/appnote-970311-iz.zip // PkWare has also a specification at ftp://ftp.pkware.com/probdesc.zip #define ZIP_HANDLE 1 #define ZIP_FILENAME 2 #define ZIP_MEMORY 3 #define zmalloc(len) malloc(len) #define zfree(p) free(p) /* void *zmalloc(unsigned int len) { char *buf = new char[len+32]; for (int i=0; i<16; i++) { buf[i]=i; buf[len+31-i]=i; } *((unsigned int*)buf) = len; char c[1000]; wsprintf(c,"malloc 0x%lx - %lu",buf+16,len); OutputDebugString(c); return buf+16; } void zfree(void *buf) { char c[1000]; wsprintf(c,"free 0x%lx",buf); OutputDebugString(c); char *p = ((char*)buf)-16; unsigned int len = *((unsigned int*)p); bool blown=false; for (int i=0; i<16; i++) { char lo = p[i]; char hi = p[len+31-i]; if (hi!=i || (lo!=i && i>4)) blown=true; } if (blown) { OutputDebugString("BLOWN!!!"); } delete[] p; } */ typedef struct tm_unz_s { unsigned int tm_sec; // seconds after the minute - [0,59] unsigned int tm_min; // minutes after the hour - [0,59] unsigned int tm_hour; // hours since midnight - [0,23] unsigned int tm_mday; // day of the month - [1,31] unsigned int tm_mon; // months since January - [0,11] unsigned int tm_year; // years - [1980..2044] } tm_unz; // unz_global_info structure contain global data about the ZIPfile typedef struct unz_global_info_s { unsigned long number_entry; // total number of entries in the central dir on this disk unsigned long size_comment; // size of the global comment of the zipfile } unz_global_info; // unz_file_info contain information about a file in the zipfile typedef struct unz_file_info_s { unsigned long version; // version made by 2 bytes unsigned long version_needed; // version needed to extract 2 bytes unsigned long flag; // general purpose bit flag 2 bytes unsigned long compression_method; // compression method 2 bytes unsigned long dosDate; // last mod file date in Dos fmt 4 bytes unsigned long crc; // crc-32 4 bytes unsigned long compressed_size; // compressed size 4 bytes unsigned long uncompressed_size; // uncompressed size 4 bytes unsigned long size_filename; // filename length 2 bytes unsigned long size_file_extra; // extra field length 2 bytes unsigned long size_file_comment; // file comment length 2 bytes unsigned long disk_num_start; // disk number start 2 bytes unsigned long internal_fa; // internal file attributes 2 bytes unsigned long external_fa; // external file attributes 4 bytes tm_unz tmu_date; } unz_file_info; #define UNZ_OK (0) #define UNZ_END_OF_LIST_OF_FILE (-100) #define UNZ_ERRNO (Z_ERRNO) #define UNZ_EOF (0) #define UNZ_PARAMERROR (-102) #define UNZ_BADZIPFILE (-103) #define UNZ_INTERNALERROR (-104) #define UNZ_CRCERROR (-105) #define UNZ_PASSWORD (-106) #define ZLIB_VERSION "1.1.3" // Allowed flush values; see deflate() for details #define Z_NO_FLUSH 0 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 // compression levels #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) // compression strategy; see deflateInit2() for details #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_DEFAULT_STRATEGY 0 // Possible values of the data_type field #define Z_BINARY 0 #define Z_ASCII 1 #define Z_UNKNOWN 2 // The deflate compression method (the only one supported in this version) #define Z_DEFLATED 8 // for initializing zalloc, zfree, opaque #define Z_NULL 0 // case sensitivity when searching for filenames #define CASE_SENSITIVE 1 #define CASE_INSENSITIVE 2 // Return codes for the compression/decompression functions. Negative // values are errors, positive values are used for special but normal events. #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) // Basic data types typedef unsigned char Byte; // 8 bits typedef unsigned int uInt; // 16 bits or more typedef unsigned long uLong; // 32 bits or more typedef void *voidpf; typedef void *voidp; typedef long z_off_t; typedef voidpf (*alloc_func) (voidpf opaque, uInt items, uInt size); typedef void (*free_func) (voidpf opaque, voidpf address); struct internal_state; typedef struct z_stream_s { Byte *next_in; // next input byte uInt avail_in; // number of bytes available at next_in uLong total_in; // total nb of input bytes read so far Byte *next_out; // next output byte should be put there uInt avail_out; // remaining free space at next_out uLong total_out; // total nb of bytes output so far char *msg; // last error message, NULL if no error struct internal_state *state; // not visible by applications alloc_func zalloc; // used to allocate the internal state free_func zfree; // used to free the internal state voidpf opaque; // private data object passed to zalloc and zfree int data_type; // best guess about the data type: ascii or binary uLong adler; // adler32 value of the uncompressed data uLong reserved; // reserved for future use } z_stream; typedef z_stream *z_streamp; // The application must update next_in and avail_in when avail_in has // dropped to zero. It must update next_out and avail_out when avail_out // has dropped to zero. The application must initialize zalloc, zfree and // opaque before calling the init function. All other fields are set by the // compression library and must not be updated by the application. // // The opaque value provided by the application will be passed as the first // parameter for calls of zalloc and zfree. This can be useful for custom // memory management. The compression library attaches no meaning to the // opaque value. // // zalloc must return Z_NULL if there is not enough memory for the object. // If zlib is used in a multi-threaded application, zalloc and zfree must be // thread safe. // // The fields total_in and total_out can be used for statistics or // progress reports. After compression, total_in holds the total size of // the uncompressed data and may be saved for use in the decompressor // (particularly if the decompressor wants to decompress everything in // a single step). // // basic functions const char *zlibVersion (); // The application can compare zlibVersion and ZLIB_VERSION for consistency. // If the first character differs, the library code actually used is // not compatible with the zlib.h header file used by the application. // This check is automatically made by inflateInit. int inflate (z_streamp strm, int flush); // // inflate decompresses as much data as possible, and stops when the input // buffer becomes empty or the output buffer becomes full. It may some // introduce some output latency (reading input without producing any output) // except when forced to flush. // // The detailed semantics are as follows. inflate performs one or both of the // following actions: // // - Decompress more input starting at next_in and update next_in and avail_in // accordingly. If not all input can be processed (because there is not // enough room in the output buffer), next_in is updated and processing // will resume at this point for the next call of inflate(). // // - Provide more output starting at next_out and update next_out and avail_out // accordingly. inflate() provides as much output as possible, until there // is no more input data or no more space in the output buffer (see below // about the flush parameter). // // Before the call of inflate(), the application should ensure that at least // one of the actions is possible, by providing more input and/or consuming // more output, and updating the next_* and avail_* values accordingly. // The application can consume the uncompressed output when it wants, for // example when the output buffer is full (avail_out == 0), or after each // call of inflate(). If inflate returns Z_OK and with zero avail_out, it // must be called again after making room in the output buffer because there // might be more output pending. // // If the parameter flush is set to Z_SYNC_FLUSH, inflate flushes as much // output as possible to the output buffer. The flushing behavior of inflate is // not specified for values of the flush parameter other than Z_SYNC_FLUSH // and Z_FINISH, but the current implementation actually flushes as much output // as possible anyway. // // inflate() should normally be called until it returns Z_STREAM_END or an // error. However if all decompression is to be performed in a single step // (a single call of inflate), the parameter flush should be set to // Z_FINISH. In this case all pending input is processed and all pending // output is flushed; avail_out must be large enough to hold all the // uncompressed data. (The size of the uncompressed data may have been saved // by the compressor for this purpose.) The next operation on this stream must // be inflateEnd to deallocate the decompression state. The use of Z_FINISH // is never required, but can be used to inform inflate that a faster routine // may be used for the single inflate() call. // // If a preset dictionary is needed at this point (see inflateSetDictionary // below), inflate sets strm-adler to the adler32 checksum of the // dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise // it sets strm->adler to the adler32 checksum of all output produced // so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or // an error code as described below. At the end of the stream, inflate() // checks that its computed adler32 checksum is equal to that saved by the // compressor and returns Z_STREAM_END only if the checksum is correct. // // inflate() returns Z_OK if some progress has been made (more input processed // or more output produced), Z_STREAM_END if the end of the compressed data has // been reached and all uncompressed output has been produced, Z_NEED_DICT if a // preset dictionary is needed at this point, Z_DATA_ERROR if the input data was // corrupted (input stream not conforming to the zlib format or incorrect // adler32 checksum), Z_STREAM_ERROR if the stream structure was inconsistent // (for example if next_in or next_out was NULL), Z_MEM_ERROR if there was not // enough memory, Z_BUF_ERROR if no progress is possible or if there was not // enough room in the output buffer when Z_FINISH is used. In the Z_DATA_ERROR // case, the application may then call inflateSync to look for a good // compression block. // int inflateEnd (z_streamp strm); // // All dynamically allocated data structures for this stream are freed. // This function discards any unprocessed input and does not flush any // pending output. // // inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state // was inconsistent. In the error case, msg may be set but then points to a // static string (which must not be deallocated). // Advanced functions // The following functions are needed only in some special applications. int inflateSetDictionary (z_streamp strm, const Byte *dictionary, uInt dictLength); // // Initializes the decompression dictionary from the given uncompressed byte // sequence. This function must be called immediately after a call of inflate // if this call returned Z_NEED_DICT. The dictionary chosen by the compressor // can be determined from the Adler32 value returned by this call of // inflate. The compressor and decompressor must use exactly the same // dictionary. // // inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a // parameter is invalid (such as NULL dictionary) or the stream state is // inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the // expected one (incorrect Adler32 value). inflateSetDictionary does not // perform any decompression: this will be done by subsequent calls of // inflate(). int inflateSync (z_streamp strm); // // Skips invalid compressed data until a full flush point can be found, or until all // available input is skipped. No output is provided. // // inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR // if no more input was provided, Z_DATA_ERROR if no flush point has been found, // or Z_STREAM_ERROR if the stream structure was inconsistent. In the success // case, the application may save the current current value of total_in which // indicates where valid compressed data was found. In the error case, the // application may repeatedly call inflateSync, providing more input each time, // until success or end of the input data. int inflateReset (z_streamp strm); // This function is equivalent to inflateEnd followed by inflateInit, // but does not free and reallocate all the internal decompression state. // The stream will keep attributes that may have been set by inflateInit2. // // inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source // stream state was inconsistent (such as zalloc or state being NULL). // // checksum functions // These functions are not related to compression but are exported // anyway because they might be useful in applications using the // compression library. uLong adler32 (uLong adler, const Byte *buf, uInt len); // Update a running Adler-32 checksum with the bytes buf[0..len-1] and // return the updated checksum. If buf is NULL, this function returns // the required initial value for the checksum. // An Adler-32 checksum is almost as reliable as a CRC32 but can be computed // much faster. Usage example: // // uLong adler = adler32(0L, Z_NULL, 0); // // while (read_buffer(buffer, length) != EOF) { // adler = adler32(adler, buffer, length); // } // if (adler != original_adler) error(); uLong ucrc32 (uLong crc, const Byte *buf, uInt len); // Update a running crc with the bytes buf[0..len-1] and return the updated // crc. If buf is NULL, this function returns the required initial value // for the crc. Pre- and post-conditioning (one's complement) is performed // within this function so it shouldn't be done by the application. // Usage example: // // uLong crc = crc32(0L, Z_NULL, 0); // // while (read_buffer(buffer, length) != EOF) { // crc = crc32(crc, buffer, length); // } // if (crc != original_crc) error(); const char *zError (int err); int inflateSyncPoint (z_streamp z); const uLong *get_crc_table (void); typedef unsigned char uch; typedef uch uchf; typedef unsigned short ush; typedef ush ushf; typedef unsigned long ulg; const char *const z_errmsg[10] = // indexed by 2-zlib_error { "need dictionary", // Z_NEED_DICT 2 "stream end", // Z_STREAM_END 1 "", // Z_OK 0 "file error", // Z_ERRNO (-1) "stream error", // Z_STREAM_ERROR (-2) "data error", // Z_DATA_ERROR (-3) "insufficient memory", // Z_MEM_ERROR (-4) "buffer error", // Z_BUF_ERROR (-5) "incompatible version",// Z_VERSION_ERROR (-6) "" }; #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = (char*)ERR_MSG(err), (err)) // To be used only when the state is known to be valid // common constants #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 // The three kinds of block type #define MIN_MATCH 3 #define MAX_MATCH 258 // The minimum and maximum match lengths #define PRESET_DICT 0x20 // preset dictionary flag in zlib header // target dependencies #define OS_CODE 0x0b // Window 95 & Windows NT // functions #define zmemzero(dest, len) memset(dest, 0, len) // Diagnostic functions #define LuAssert(cond,msg) #define LuTrace(x) #define LuTracev(x) #define LuTracevv(x) #define LuTracec(c,x) #define LuTracecv(c,x) typedef uLong (*check_func) (uLong check, const Byte *buf, uInt len); voidpf zcalloc (voidpf opaque, unsigned items, unsigned size); void zcfree (voidpf opaque, voidpf ptr); #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) //void ZFREE(z_streamp strm,voidpf addr) //{ *((strm)->zfree))((strm)->opaque, addr); //} #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} // Huffman code lookup table entry--this entry is four bytes for machines // that have 16-bit pointers (e.g. PC's in the small or medium model). typedef struct inflate_huft_s inflate_huft; struct inflate_huft_s { union { struct { Byte Exop; // number of extra bits or operation Byte Bits; // number of bits in this code or subcode } what; uInt pad; // pad structure to a power of 2 (4 bytes for } word; // 16-bit, 8 bytes for 32-bit int's) uInt base; // literal, length base, distance base, or table offset }; // Maximum size of dynamic tree. The maximum found in a long but non- // exhaustive search was 1004 huft structures (850 for length/literals // and 154 for distances, the latter actually the result of an // exhaustive search). The actual maximum is not known, but the // value below is more than safe. #define MANY 1440 int inflate_trees_bits ( uInt *, // 19 code lengths uInt *, // bits tree desired/actual depth inflate_huft * *, // bits tree result inflate_huft *, // space for trees z_streamp); // for messages int inflate_trees_dynamic ( uInt, // number of literal/length codes uInt, // number of distance codes uInt *, // that many (total) code lengths uInt *, // literal desired/actual bit depth uInt *, // distance desired/actual bit depth inflate_huft * *, // literal/length tree result inflate_huft * *, // distance tree result inflate_huft *, // space for trees z_streamp); // for messages int inflate_trees_fixed ( uInt *, // literal desired/actual bit depth uInt *, // distance desired/actual bit depth const inflate_huft * *, // literal/length tree result const inflate_huft * *, // distance tree result z_streamp); // for memory allocation struct inflate_blocks_state; typedef struct inflate_blocks_state inflate_blocks_statef; inflate_blocks_statef *inflate_blocks_new ( z_streamp z, check_func c, // check function uInt w); // window size int inflate_blocks ( inflate_blocks_statef *, z_streamp , int); // initial return code void inflate_blocks_reset ( inflate_blocks_statef *, z_streamp , uLong *); // check value on output int inflate_blocks_free ( inflate_blocks_statef *, z_streamp); void inflate_set_dictionary ( inflate_blocks_statef *s, const Byte *d, // dictionary uInt n); // dictionary length int inflate_blocks_sync_point ( inflate_blocks_statef *s); struct inflate_codes_state; typedef struct inflate_codes_state inflate_codes_statef; inflate_codes_statef *inflate_codes_new ( uInt, uInt, const inflate_huft *, const inflate_huft *, z_streamp ); int inflate_codes ( inflate_blocks_statef *, z_streamp , int); void inflate_codes_free ( inflate_codes_statef *, z_streamp ); typedef enum { IBM_TYPE, // get type bits (3, including end bit) IBM_LENS, // get lengths for stored IBM_STORED, // processing stored block IBM_TABLE, // get table lengths IBM_BTREE, // get bit lengths tree for a dynamic block IBM_DTREE, // get length, distance trees for a dynamic block IBM_CODES, // processing fixed or dynamic block IBM_DRY, // output remaining window bytes IBM_DONE, // finished last block, done IBM_BAD } // got a data error--stuck here inflate_block_mode; // inflate blocks semi-private state struct inflate_blocks_state { // mode inflate_block_mode mode; // current inflate_block mode // mode dependent information union { uInt left; // if STORED, bytes left to copy struct { uInt table; // table lengths (14 bits) uInt index; // index into blens (or border) uInt *blens; // bit lengths of codes uInt bb; // bit length tree depth inflate_huft *tb; // bit length decoding tree } trees; // if DTREE, decoding info for trees struct { inflate_codes_statef *codes; } decode; // if CODES, current state } sub; // submode uInt last; // true if this block is the last block // mode independent information uInt bitk; // bits in bit buffer uLong bitb; // bit buffer inflate_huft *hufts; // single malloc for tree space Byte *window; // sliding window Byte *end; // one byte after sliding window Byte *read; // window read pointer Byte *write; // window write pointer check_func checkfn; // check function uLong check; // check on output }; // defines for inflate input/output // update pointers and return #define UPDBITS {s->bitb=b;s->bitk=k;} #define UPDIN {z->avail_in=n;z->total_in+=(uLong)(p-z->next_in);z->next_in=p;} #define UPDOUT {s->write=q;} #define UPDATE {UPDBITS UPDIN UPDOUT} #define LEAVE {UPDATE return inflate_flush(s,z,r);} // get bytes and bits #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;} #define NEEDBYTE {if(n)r=Z_OK;else LEAVE} #define NEXTBYTE (n--,*p++) #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}} #define DUMPBITS(j) {b>>=(j);k-=(j);} // output bytes #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q) #define LOADOUT {q=s->write;m=(uInt)WAVAIL;m;} #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}} #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT} #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;} #define OUTBYTE(a) {*q++=(Byte)(a);m--;} // load local pointers #define LOAD {LOADIN LOADOUT} // masks for lower bits (size given to avoid silly warnings with Visual C++) // And'ing with mask[n] masks the lower n bits const uInt inflate_mask[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff }; // copy as much as possible from the sliding window to the output area int inflate_flush (inflate_blocks_statef *, z_streamp, int); int inflate_fast (uInt, uInt, const inflate_huft *, const inflate_huft *, inflate_blocks_statef *, z_streamp ); const uInt fixed_bl = 9; const uInt fixed_bd = 5; const inflate_huft fixed_tl[] = { {{{96, 7}}, 256}, {{{0, 8}}, 80}, {{{0, 8}}, 16}, {{{84, 8}}, 115}, {{{82, 7}}, 31}, {{{0, 8}}, 112}, {{{0, 8}}, 48}, {{{0, 9}}, 192}, {{{80, 7}}, 10}, {{{0, 8}}, 96}, {{{0, 8}}, 32}, {{{0, 9}}, 160}, {{{0, 8}}, 0}, {{{0, 8}}, 128}, {{{0, 8}}, 64}, {{{0, 9}}, 224}, {{{80, 7}}, 6}, {{{0, 8}}, 88}, {{{0, 8}}, 24}, {{{0, 9}}, 144}, {{{83, 7}}, 59}, {{{0, 8}}, 120}, {{{0, 8}}, 56}, {{{0, 9}}, 208}, {{{81, 7}}, 17}, {{{0, 8}}, 104}, {{{0, 8}}, 40}, {{{0, 9}}, 176}, {{{0, 8}}, 8}, {{{0, 8}}, 136}, {{{0, 8}}, 72}, {{{0, 9}}, 240}, {{{80, 7}}, 4}, {{{0, 8}}, 84}, {{{0, 8}}, 20}, {{{85, 8}}, 227}, {{{83, 7}}, 43}, {{{0, 8}}, 116}, {{{0, 8}}, 52}, {{{0, 9}}, 200}, {{{81, 7}}, 13}, {{{0, 8}}, 100}, {{{0, 8}}, 36}, {{{0, 9}}, 168}, {{{0, 8}}, 4}, {{{0, 8}}, 132}, {{{0, 8}}, 68}, {{{0, 9}}, 232}, {{{80, 7}}, 8}, {{{0, 8}}, 92}, {{{0, 8}}, 28}, {{{0, 9}}, 152}, {{{84, 7}}, 83}, {{{0, 8}}, 124}, {{{0, 8}}, 60}, {{{0, 9}}, 216}, {{{82, 7}}, 23}, {{{0, 8}}, 108}, {{{0, 8}}, 44}, {{{0, 9}}, 184}, {{{0, 8}}, 12}, {{{0, 8}}, 140}, {{{0, 8}}, 76}, {{{0, 9}}, 248}, {{{80, 7}}, 3}, {{{0, 8}}, 82}, {{{0, 8}}, 18}, {{{85, 8}}, 163}, {{{83, 7}}, 35}, {{{0, 8}}, 114}, {{{0, 8}}, 50}, {{{0, 9}}, 196}, {{{81, 7}}, 11}, {{{0, 8}}, 98}, {{{0, 8}}, 34}, {{{0, 9}}, 164}, {{{0, 8}}, 2}, {{{0, 8}}, 130}, {{{0, 8}}, 66}, {{{0, 9}}, 228}, {{{80, 7}}, 7}, {{{0, 8}}, 90}, {{{0, 8}}, 26}, {{{0, 9}}, 148}, {{{84, 7}}, 67}, {{{0, 8}}, 122}, {{{0, 8}}, 58}, {{{0, 9}}, 212}, {{{82, 7}}, 19}, {{{0, 8}}, 106}, {{{0, 8}}, 42}, {{{0, 9}}, 180}, {{{0, 8}}, 10}, {{{0, 8}}, 138}, {{{0, 8}}, 74}, {{{0, 9}}, 244}, {{{80, 7}}, 5}, {{{0, 8}}, 86}, {{{0, 8}}, 22}, {{{192, 8}}, 0}, {{{83, 7}}, 51}, {{{0, 8}}, 118}, {{{0, 8}}, 54}, {{{0, 9}}, 204}, {{{81, 7}}, 15}, {{{0, 8}}, 102}, {{{0, 8}}, 38}, {{{0, 9}}, 172}, {{{0, 8}}, 6}, {{{0, 8}}, 134}, {{{0, 8}}, 70}, {{{0, 9}}, 236}, {{{80, 7}}, 9}, {{{0, 8}}, 94}, {{{0, 8}}, 30}, {{{0, 9}}, 156}, {{{84, 7}}, 99}, {{{0, 8}}, 126}, {{{0, 8}}, 62}, {{{0, 9}}, 220}, {{{82, 7}}, 27}, {{{0, 8}}, 110}, {{{0, 8}}, 46}, {{{0, 9}}, 188}, {{{0, 8}}, 14}, {{{0, 8}}, 142}, {{{0, 8}}, 78}, {{{0, 9}}, 252}, {{{96, 7}}, 256}, {{{0, 8}}, 81}, {{{0, 8}}, 17}, {{{85, 8}}, 131}, {{{82, 7}}, 31}, {{{0, 8}}, 113}, {{{0, 8}}, 49}, {{{0, 9}}, 194}, {{{80, 7}}, 10}, {{{0, 8}}, 97}, {{{0, 8}}, 33}, {{{0, 9}}, 162}, {{{0, 8}}, 1}, {{{0, 8}}, 129}, {{{0, 8}}, 65}, {{{0, 9}}, 226}, {{{80, 7}}, 6}, {{{0, 8}}, 89}, {{{0, 8}}, 25}, {{{0, 9}}, 146}, {{{83, 7}}, 59}, {{{0, 8}}, 121}, {{{0, 8}}, 57}, {{{0, 9}}, 210}, {{{81, 7}}, 17}, {{{0, 8}}, 105}, {{{0, 8}}, 41}, {{{0, 9}}, 178}, {{{0, 8}}, 9}, {{{0, 8}}, 137}, {{{0, 8}}, 73}, {{{0, 9}}, 242}, {{{80, 7}}, 4}, {{{0, 8}}, 85}, {{{0, 8}}, 21}, {{{80, 8}}, 258}, {{{83, 7}}, 43}, {{{0, 8}}, 117}, {{{0, 8}}, 53}, {{{0, 9}}, 202}, {{{81, 7}}, 13}, {{{0, 8}}, 101}, {{{0, 8}}, 37}, {{{0, 9}}, 170}, {{{0, 8}}, 5}, {{{0, 8}}, 133}, {{{0, 8}}, 69}, {{{0, 9}}, 234}, {{{80, 7}}, 8}, {{{0, 8}}, 93}, {{{0, 8}}, 29}, {{{0, 9}}, 154}, {{{84, 7}}, 83}, {{{0, 8}}, 125}, {{{0, 8}}, 61}, {{{0, 9}}, 218}, {{{82, 7}}, 23}, {{{0, 8}}, 109}, {{{0, 8}}, 45}, {{{0, 9}}, 186}, {{{0, 8}}, 13}, {{{0, 8}}, 141}, {{{0, 8}}, 77}, {{{0, 9}}, 250}, {{{80, 7}}, 3}, {{{0, 8}}, 83}, {{{0, 8}}, 19}, {{{85, 8}}, 195}, {{{83, 7}}, 35}, {{{0, 8}}, 115}, {{{0, 8}}, 51}, {{{0, 9}}, 198}, {{{81, 7}}, 11}, {{{0, 8}}, 99}, {{{0, 8}}, 35}, {{{0, 9}}, 166}, {{{0, 8}}, 3}, {{{0, 8}}, 131}, {{{0, 8}}, 67}, {{{0, 9}}, 230}, {{{80, 7}}, 7}, {{{0, 8}}, 91}, {{{0, 8}}, 27}, {{{0, 9}}, 150}, {{{84, 7}}, 67}, {{{0, 8}}, 123}, {{{0, 8}}, 59}, {{{0, 9}}, 214}, {{{82, 7}}, 19}, {{{0, 8}}, 107}, {{{0, 8}}, 43}, {{{0, 9}}, 182}, {{{0, 8}}, 11}, {{{0, 8}}, 139}, {{{0, 8}}, 75}, {{{0, 9}}, 246}, {{{80, 7}}, 5}, {{{0, 8}}, 87}, {{{0, 8}}, 23}, {{{192, 8}}, 0}, {{{83, 7}}, 51}, {{{0, 8}}, 119}, {{{0, 8}}, 55}, {{{0, 9}}, 206}, {{{81, 7}}, 15}, {{{0, 8}}, 103}, {{{0, 8}}, 39}, {{{0, 9}}, 174}, {{{0, 8}}, 7}, {{{0, 8}}, 135}, {{{0, 8}}, 71}, {{{0, 9}}, 238}, {{{80, 7}}, 9}, {{{0, 8}}, 95}, {{{0, 8}}, 31}, {{{0, 9}}, 158}, {{{84, 7}}, 99}, {{{0, 8}}, 127}, {{{0, 8}}, 63}, {{{0, 9}}, 222}, {{{82, 7}}, 27}, {{{0, 8}}, 111}, {{{0, 8}}, 47}, {{{0, 9}}, 190}, {{{0, 8}}, 15}, {{{0, 8}}, 143}, {{{0, 8}}, 79}, {{{0, 9}}, 254}, {{{96, 7}}, 256}, {{{0, 8}}, 80}, {{{0, 8}}, 16}, {{{84, 8}}, 115}, {{{82, 7}}, 31}, {{{0, 8}}, 112}, {{{0, 8}}, 48}, {{{0, 9}}, 193}, {{{80, 7}}, 10}, {{{0, 8}}, 96}, {{{0, 8}}, 32}, {{{0, 9}}, 161}, {{{0, 8}}, 0}, {{{0, 8}}, 128}, {{{0, 8}}, 64}, {{{0, 9}}, 225}, {{{80, 7}}, 6}, {{{0, 8}}, 88}, {{{0, 8}}, 24}, {{{0, 9}}, 145}, {{{83, 7}}, 59}, {{{0, 8}}, 120}, {{{0, 8}}, 56}, {{{0, 9}}, 209}, {{{81, 7}}, 17}, {{{0, 8}}, 104}, {{{0, 8}}, 40}, {{{0, 9}}, 177}, {{{0, 8}}, 8}, {{{0, 8}}, 136}, {{{0, 8}}, 72}, {{{0, 9}}, 241}, {{{80, 7}}, 4}, {{{0, 8}}, 84}, {{{0, 8}}, 20}, {{{85, 8}}, 227}, {{{83, 7}}, 43}, {{{0, 8}}, 116}, {{{0, 8}}, 52}, {{{0, 9}}, 201}, {{{81, 7}}, 13}, {{{0, 8}}, 100}, {{{0, 8}}, 36}, {{{0, 9}}, 169}, {{{0, 8}}, 4}, {{{0, 8}}, 132}, {{{0, 8}}, 68}, {{{0, 9}}, 233}, {{{80, 7}}, 8}, {{{0, 8}}, 92}, {{{0, 8}}, 28}, {{{0, 9}}, 153}, {{{84, 7}}, 83}, {{{0, 8}}, 124}, {{{0, 8}}, 60}, {{{0, 9}}, 217}, {{{82, 7}}, 23}, {{{0, 8}}, 108}, {{{0, 8}}, 44}, {{{0, 9}}, 185}, {{{0, 8}}, 12}, {{{0, 8}}, 140}, {{{0, 8}}, 76}, {{{0, 9}}, 249}, {{{80, 7}}, 3}, {{{0, 8}}, 82}, {{{0, 8}}, 18}, {{{85, 8}}, 163}, {{{83, 7}}, 35}, {{{0, 8}}, 114}, {{{0, 8}}, 50}, {{{0, 9}}, 197}, {{{81, 7}}, 11}, {{{0, 8}}, 98}, {{{0, 8}}, 34}, {{{0, 9}}, 165}, {{{0, 8}}, 2}, {{{0, 8}}, 130}, {{{0, 8}}, 66}, {{{0, 9}}, 229}, {{{80, 7}}, 7}, {{{0, 8}}, 90}, {{{0, 8}}, 26}, {{{0, 9}}, 149}, {{{84, 7}}, 67}, {{{0, 8}}, 122}, {{{0, 8}}, 58}, {{{0, 9}}, 213}, {{{82, 7}}, 19}, {{{0, 8}}, 106}, {{{0, 8}}, 42}, {{{0, 9}}, 181}, {{{0, 8}}, 10}, {{{0, 8}}, 138}, {{{0, 8}}, 74}, {{{0, 9}}, 245}, {{{80, 7}}, 5}, {{{0, 8}}, 86}, {{{0, 8}}, 22}, {{{192, 8}}, 0}, {{{83, 7}}, 51}, {{{0, 8}}, 118}, {{{0, 8}}, 54}, {{{0, 9}}, 205}, {{{81, 7}}, 15}, {{{0, 8}}, 102}, {{{0, 8}}, 38}, {{{0, 9}}, 173}, {{{0, 8}}, 6}, {{{0, 8}}, 134}, {{{0, 8}}, 70}, {{{0, 9}}, 237}, {{{80, 7}}, 9}, {{{0, 8}}, 94}, {{{0, 8}}, 30}, {{{0, 9}}, 157}, {{{84, 7}}, 99}, {{{0, 8}}, 126}, {{{0, 8}}, 62}, {{{0, 9}}, 221}, {{{82, 7}}, 27}, {{{0, 8}}, 110}, {{{0, 8}}, 46}, {{{0, 9}}, 189}, {{{0, 8}}, 14}, {{{0, 8}}, 142}, {{{0, 8}}, 78}, {{{0, 9}}, 253}, {{{96, 7}}, 256}, {{{0, 8}}, 81}, {{{0, 8}}, 17}, {{{85, 8}}, 131}, {{{82, 7}}, 31}, {{{0, 8}}, 113}, {{{0, 8}}, 49}, {{{0, 9}}, 195}, {{{80, 7}}, 10}, {{{0, 8}}, 97}, {{{0, 8}}, 33}, {{{0, 9}}, 163}, {{{0, 8}}, 1}, {{{0, 8}}, 129}, {{{0, 8}}, 65}, {{{0, 9}}, 227}, {{{80, 7}}, 6}, {{{0, 8}}, 89}, {{{0, 8}}, 25}, {{{0, 9}}, 147}, {{{83, 7}}, 59}, {{{0, 8}}, 121}, {{{0, 8}}, 57}, {{{0, 9}}, 211}, {{{81, 7}}, 17}, {{{0, 8}}, 105}, {{{0, 8}}, 41}, {{{0, 9}}, 179}, {{{0, 8}}, 9}, {{{0, 8}}, 137}, {{{0, 8}}, 73}, {{{0, 9}}, 243}, {{{80, 7}}, 4}, {{{0, 8}}, 85}, {{{0, 8}}, 21}, {{{80, 8}}, 258}, {{{83, 7}}, 43}, {{{0, 8}}, 117}, {{{0, 8}}, 53}, {{{0, 9}}, 203}, {{{81, 7}}, 13}, {{{0, 8}}, 101}, {{{0, 8}}, 37}, {{{0, 9}}, 171}, {{{0, 8}}, 5}, {{{0, 8}}, 133}, {{{0, 8}}, 69}, {{{0, 9}}, 235}, {{{80, 7}}, 8}, {{{0, 8}}, 93}, {{{0, 8}}, 29}, {{{0, 9}}, 155}, {{{84, 7}}, 83}, {{{0, 8}}, 125}, {{{0, 8}}, 61}, {{{0, 9}}, 219}, {{{82, 7}}, 23}, {{{0, 8}}, 109}, {{{0, 8}}, 45}, {{{0, 9}}, 187}, {{{0, 8}}, 13}, {{{0, 8}}, 141}, {{{0, 8}}, 77}, {{{0, 9}}, 251}, {{{80, 7}}, 3}, {{{0, 8}}, 83}, {{{0, 8}}, 19}, {{{85, 8}}, 195}, {{{83, 7}}, 35}, {{{0, 8}}, 115}, {{{0, 8}}, 51}, {{{0, 9}}, 199}, {{{81, 7}}, 11}, {{{0, 8}}, 99}, {{{0, 8}}, 35}, {{{0, 9}}, 167}, {{{0, 8}}, 3}, {{{0, 8}}, 131}, {{{0, 8}}, 67}, {{{0, 9}}, 231}, {{{80, 7}}, 7}, {{{0, 8}}, 91}, {{{0, 8}}, 27}, {{{0, 9}}, 151}, {{{84, 7}}, 67}, {{{0, 8}}, 123}, {{{0, 8}}, 59}, {{{0, 9}}, 215}, {{{82, 7}}, 19}, {{{0, 8}}, 107}, {{{0, 8}}, 43}, {{{0, 9}}, 183}, {{{0, 8}}, 11}, {{{0, 8}}, 139}, {{{0, 8}}, 75}, {{{0, 9}}, 247}, {{{80, 7}}, 5}, {{{0, 8}}, 87}, {{{0, 8}}, 23}, {{{192, 8}}, 0}, {{{83, 7}}, 51}, {{{0, 8}}, 119}, {{{0, 8}}, 55}, {{{0, 9}}, 207}, {{{81, 7}}, 15}, {{{0, 8}}, 103}, {{{0, 8}}, 39}, {{{0, 9}}, 175}, {{{0, 8}}, 7}, {{{0, 8}}, 135}, {{{0, 8}}, 71}, {{{0, 9}}, 239}, {{{80, 7}}, 9}, {{{0, 8}}, 95}, {{{0, 8}}, 31}, {{{0, 9}}, 159}, {{{84, 7}}, 99}, {{{0, 8}}, 127}, {{{0, 8}}, 63}, {{{0, 9}}, 223}, {{{82, 7}}, 27}, {{{0, 8}}, 111}, {{{0, 8}}, 47}, {{{0, 9}}, 191}, {{{0, 8}}, 15}, {{{0, 8}}, 143}, {{{0, 8}}, 79}, {{{0, 9}}, 255} }; const inflate_huft fixed_td[] = { {{{80, 5}}, 1}, {{{87, 5}}, 257}, {{{83, 5}}, 17}, {{{91, 5}}, 4097}, {{{81, 5}}, 5}, {{{89, 5}}, 1025}, {{{85, 5}}, 65}, {{{93, 5}}, 16385}, {{{80, 5}}, 3}, {{{88, 5}}, 513}, {{{84, 5}}, 33}, {{{92, 5}}, 8193}, {{{82, 5}}, 9}, {{{90, 5}}, 2049}, {{{86, 5}}, 129}, {{{192, 5}}, 24577}, {{{80, 5}}, 2}, {{{87, 5}}, 385}, {{{83, 5}}, 25}, {{{91, 5}}, 6145}, {{{81, 5}}, 7}, {{{89, 5}}, 1537}, {{{85, 5}}, 97}, {{{93, 5}}, 24577}, {{{80, 5}}, 4}, {{{88, 5}}, 769}, {{{84, 5}}, 49}, {{{92, 5}}, 12289}, {{{82, 5}}, 13}, {{{90, 5}}, 3073}, {{{86, 5}}, 193}, {{{192, 5}}, 24577} }; // copy as much as possible from the sliding window to the output area int inflate_flush(inflate_blocks_statef *s, z_streamp z, int r) { uInt n; Byte *p; Byte *q; // local copies of source and destination pointers p = z->next_out; q = s->read; // compute number of bytes to copy as far as end of window n = (uInt)((q <= s->write ? s->write : s->end) - q); if (n > z->avail_out) n = z->avail_out; if (n && r == Z_BUF_ERROR) r = Z_OK; // update counters z->avail_out -= n; z->total_out += n; // update check information if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(s->check, q, n); // copy as far as end of window if (n != 0) // check for n!=0 to avoid waking up CodeGuard { memcpy(p, q, n); p += n; q += n; } // see if more to copy at beginning of window if (q == s->end) { // wrap pointers q = s->window; if (s->write == s->end) s->write = s->window; // compute bytes to copy n = (uInt)(s->write - q); if (n > z->avail_out) n = z->avail_out; if (n && r == Z_BUF_ERROR) r = Z_OK; // update counters z->avail_out -= n; z->total_out += n; // update check information if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(s->check, q, n); // copy if (n != 0) { memcpy(p, q, n); p += n; q += n; } } // update pointers z->next_out = p; s->read = q; // done return r; } // simplify the use of the inflate_huft type with some defines #define exop word.what.Exop #define bits word.what.Bits typedef enum // waiting for "i:"=input, "o:"=output, "x:"=nothing { START, // x: set up for LEN LEN, // i: get length/literal/eob next LENEXT, // i: getting length extra (have base) DIST, // i: get distance next DISTEXT, // i: getting distance extra COPY, // o: copying bytes in window, waiting for space LIT, // o: got literal, waiting for output space WASH, // o: got eob, possibly still output waiting END, // x: got eob and all data flushed BADCODE } // x: got error inflate_codes_mode; // inflate codes private state struct inflate_codes_state { // mode inflate_codes_mode mode; // current inflate_codes mode // mode dependent information uInt len; union { struct { const inflate_huft *tree; // pointer into tree uInt need; // bits needed } code; // if LEN or DIST, where in tree uInt lit; // if LIT, literal struct { uInt get; // bits to get for extra uInt dist; // distance back to copy from } copy; // if EXT or COPY, where and how much } sub; // submode // mode independent information Byte lbits; // ltree bits decoded per branch Byte dbits; // dtree bits decoder per branch const inflate_huft *ltree; // literal/length/eob tree const inflate_huft *dtree; // distance tree }; inflate_codes_statef *inflate_codes_new( uInt bl, uInt bd, const inflate_huft *tl, const inflate_huft *td, // need separate declaration for Borland C++ z_streamp z) { inflate_codes_statef *c; if ((c = (inflate_codes_statef *) ZALLOC(z, 1, sizeof(struct inflate_codes_state))) != Z_NULL) { c->mode = START; c->lbits = (Byte)bl; c->dbits = (Byte)bd; c->ltree = tl; c->dtree = td; LuTracev((stderr, "inflate: codes new\n")); } return c; } int inflate_codes(inflate_blocks_statef *s, z_streamp z, int r) { uInt j; // temporary storage const inflate_huft *t; // temporary pointer uInt e; // extra bits or operation uLong b; // bit buffer uInt k; // bits in bit buffer Byte *p; // input data pointer uInt n; // bytes available there Byte *q; // output window write pointer uInt m; // bytes to end of window or read pointer Byte *f; // pointer to copy strings from inflate_codes_statef *c = s->sub.decode.codes; // codes state // copy input/output information to locals (UPDATE macro restores) LOAD // process input and output based on current state for (;;) switch (c->mode) { // waiting for "i:"=input, "o:"=output, "x:"=nothing case START: // x: set up for LEN #ifndef SLOW if (m >= 258 && n >= 10) { UPDATE r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z); LOAD if (r != Z_OK) { c->mode = r == Z_STREAM_END ? WASH : BADCODE; break; } } #endif // !SLOW c->sub.code.need = c->lbits; c->sub.code.tree = c->ltree; c->mode = LEN; case LEN: // i: get length/literal/eob next j = c->sub.code.need; NEEDBITS(j) t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); DUMPBITS(t->bits) e = (uInt)(t->exop); if (e == 0) // literal { c->sub.lit = t->base; LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", t->base)); c->mode = LIT; break; } if (e & 16) // length { c->sub.copy.get = e & 15; c->len = t->base; c->mode = LENEXT; break; } if ((e & 64) == 0) // next table { c->sub.code.need = e; c->sub.code.tree = t + t->base; break; } if (e & 32) // end of block { LuTracevv((stderr, "inflate: end of block\n")); c->mode = WASH; break; } c->mode = BADCODE; // invalid code z->msg = (char *)"invalid literal/length code"; r = Z_DATA_ERROR; LEAVE case LENEXT: // i: getting length extra (have base) j = c->sub.copy.get; NEEDBITS(j) c->len += (uInt)b & inflate_mask[j]; DUMPBITS(j) c->sub.code.need = c->dbits; c->sub.code.tree = c->dtree; LuTracevv((stderr, "inflate: length %u\n", c->len)); c->mode = DIST; case DIST: // i: get distance next j = c->sub.code.need; NEEDBITS(j) t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); DUMPBITS(t->bits) e = (uInt)(t->exop); if (e & 16) // distance { c->sub.copy.get = e & 15; c->sub.copy.dist = t->base; c->mode = DISTEXT; break; } if ((e & 64) == 0) // next table { c->sub.code.need = e; c->sub.code.tree = t + t->base; break; } c->mode = BADCODE; // invalid code z->msg = (char *)"invalid distance code"; r = Z_DATA_ERROR; LEAVE case DISTEXT: // i: getting distance extra j = c->sub.copy.get; NEEDBITS(j) c->sub.copy.dist += (uInt)b & inflate_mask[j]; DUMPBITS(j) LuTracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist)); c->mode = COPY; case COPY: // o: copying bytes in window, waiting for space f = q - c->sub.copy.dist; while (f < s->window) // modulo window size-"while" instead f += s->end - s->window; // of "if" handles invalid distances while (c->len) { NEEDOUT OUTBYTE(*f++) if (f == s->end) f = s->window; c->len--; } c->mode = START; break; case LIT: // o: got literal, waiting for output space NEEDOUT OUTBYTE(c->sub.lit) c->mode = START; break; case WASH: // o: got eob, possibly more output if (k > 7) // return unused byte, if any { //Assert(k < 16, "inflate_codes grabbed too many bytes") k -= 8; n++; p--; // can always return one } FLUSH if (s->read != s->write) LEAVE c->mode = END; case END: r = Z_STREAM_END; LEAVE case BADCODE: // x: got error r = Z_DATA_ERROR; LEAVE default: r = Z_STREAM_ERROR; LEAVE } } void inflate_codes_free(inflate_codes_statef *c, z_streamp z) { ZFREE(z, c); LuTracev((stderr, "inflate: codes free\n")); } // infblock.c -- interpret and process block types to last block // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h //struct inflate_codes_state {int dummy;}; // for buggy compilers // Table for deflate from PKZIP's appnote.txt. const uInt border[] = // Order of the bit length code lengths { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; // // Notes beyond the 1.93a appnote.txt: // // 1. Distance pointers never point before the beginning of the output stream. // 2. Distance pointers can point back across blocks, up to 32k away. // 3. There is an implied maximum of 7 bits for the bit length table and // 15 bits for the actual data. // 4. If only one code exists, then it is encoded using one bit. (Zero // would be more efficient, but perhaps a little confusing.) If two // codes exist, they are coded using one bit each (0 and 1). // 5. There is no way of sending zero distance codes--a dummy must be // sent if there are none. (History: a pre 2.0 version of PKZIP would // store blocks with no distance codes, but this was discovered to be // too harsh a criterion.) Valid only for 1.93a. 2.04c does allow // zero distance codes, which is sent as one code of zero bits in // length. // 6. There are up to 286 literal/length codes. Code 256 represents the // end-of-block. Note however that the static length tree defines // 288 codes just to fill out the Huffman codes. Codes 286 and 287 // cannot be used though, since there is no length base or extra bits // defined for them. Similarily, there are up to 30 distance codes. // However, static trees define 32 codes (all 5 bits) to fill out the // Huffman codes, but the last two had better not show up in the data. // 7. Unzip can check dynamic Huffman blocks for complete code sets. // The exception is that a single code would not be complete (see #4). // 8. The five bits following the block type is really the number of // literal codes sent minus 257. // 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits // (1+6+6). Therefore, to output three times the length, you output // three codes (1+1+1), whereas to output four times the same length, // you only need two codes (1+3). Hmm. //10. In the tree reconstruction algorithm, Code = Code + Increment // only if BitLength(i) is not zero. (Pretty obvious.) //11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) //12. Note: length code 284 can represent 227-258, but length code 285 // really is 258. The last length deserves its own, short code // since it gets used a lot in very redundant files. The length // 258 is special since 258 - 3 (the min match length) is 255. //13. The literal/length and distance code bit lengths are read as a // single stream of lengths. It is possible (and advantageous) for // a repeat code (16, 17, or 18) to go across the boundary between // the two sets of lengths. void inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLong *c) { if (c != Z_NULL) *c = s->check; if (s->mode == IBM_BTREE || s->mode == IBM_DTREE) ZFREE(z, s->sub.trees.blens); if (s->mode == IBM_CODES) inflate_codes_free(s->sub.decode.codes, z); s->mode = IBM_TYPE; s->bitk = 0; s->bitb = 0; s->read = s->write = s->window; if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(0L, (const Byte *)Z_NULL, 0); LuTracev((stderr, "inflate: blocks reset\n")); } inflate_blocks_statef *inflate_blocks_new(z_streamp z, check_func c, uInt w) { inflate_blocks_statef *s; if ((s = (inflate_blocks_statef *)ZALLOC (z, 1, sizeof(struct inflate_blocks_state))) == Z_NULL) return s; if ((s->hufts = (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL) { ZFREE(z, s); return Z_NULL; } if ((s->window = (Byte *)ZALLOC(z, 1, w)) == Z_NULL) { ZFREE(z, s->hufts); ZFREE(z, s); return Z_NULL; } s->end = s->window + w; s->checkfn = c; s->mode = IBM_TYPE; LuTracev((stderr, "inflate: blocks allocated\n")); inflate_blocks_reset(s, z, Z_NULL); return s; } int inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r) { uInt t; // temporary storage uLong b; // bit buffer uInt k; // bits in bit buffer Byte *p; // input data pointer uInt n; // bytes available there Byte *q; // output window write pointer uInt m; // bytes to end of window or read pointer // copy input/output information to locals (UPDATE macro restores) LOAD // process input based on current state for (;;) switch (s->mode) { case IBM_TYPE: NEEDBITS(3) t = (uInt)b & 7; s->last = t & 1; switch (t >> 1) { case 0: // stored LuTracev((stderr, "inflate: stored block%s\n", s->last ? " (last)" : "")); DUMPBITS(3) t = k & 7; // go to byte boundary DUMPBITS(t) s->mode = IBM_LENS; // get length of stored block break; case 1: // fixed LuTracev((stderr, "inflate: fixed codes block%s\n", s->last ? " (last)" : "")); { uInt bl, bd; const inflate_huft *tl, *td; inflate_trees_fixed(&bl, &bd, &tl, &td, z); s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z); if (s->sub.decode.codes == Z_NULL) { r = Z_MEM_ERROR; LEAVE } } DUMPBITS(3) s->mode = IBM_CODES; break; case 2: // dynamic LuTracev((stderr, "inflate: dynamic codes block%s\n", s->last ? " (last)" : "")); DUMPBITS(3) s->mode = IBM_TABLE; break; case 3: // illegal DUMPBITS(3) s->mode = IBM_BAD; z->msg = (char *)"invalid block type"; r = Z_DATA_ERROR; LEAVE } break; case IBM_LENS: NEEDBITS(32) if ((((~b) >> 16) & 0xffff) != (b & 0xffff)) { s->mode = IBM_BAD; z->msg = (char *)"invalid stored block lengths"; r = Z_DATA_ERROR; LEAVE } s->sub.left = (uInt)b & 0xffff; b = k = 0; // dump bits LuTracev((stderr, "inflate: stored length %u\n", s->sub.left)); s->mode = s->sub.left ? IBM_STORED : (s->last ? IBM_DRY : IBM_TYPE); break; case IBM_STORED: if (n == 0) LEAVE NEEDOUT t = s->sub.left; if (t > n) t = n; if (t > m) t = m; memcpy(q, p, t); p += t; n -= t; q += t; m -= t; if ((s->sub.left -= t) != 0) break; LuTracev((stderr, "inflate: stored end, %lu total out\n", z->total_out + (q >= s->read ? q - s->read : (s->end - s->read) + (q - s->window)))); s->mode = s->last ? IBM_DRY : IBM_TYPE; break; case IBM_TABLE: NEEDBITS(14) s->sub.trees.table = t = (uInt)b & 0x3fff; // remove this section to workaround bug in pkzip if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) { s->mode = IBM_BAD; z->msg = (char *)"too many length or distance symbols"; r = Z_DATA_ERROR; LEAVE } // end remove t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); if ((s->sub.trees.blens = (uInt *)ZALLOC(z, t, sizeof(uInt))) == Z_NULL) { r = Z_MEM_ERROR; LEAVE } DUMPBITS(14) s->sub.trees.index = 0; LuTracev((stderr, "inflate: table sizes ok\n")); s->mode = IBM_BTREE; case IBM_BTREE: while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10)) { NEEDBITS(3) s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7; DUMPBITS(3) } while (s->sub.trees.index < 19) s->sub.trees.blens[border[s->sub.trees.index++]] = 0; s->sub.trees.bb = 7; t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb, &s->sub.trees.tb, s->hufts, z); if (t != Z_OK) { r = t; if (r == Z_DATA_ERROR) { ZFREE(z, s->sub.trees.blens); s->mode = IBM_BAD; } LEAVE } s->sub.trees.index = 0; LuTracev((stderr, "inflate: bits tree ok\n")); s->mode = IBM_DTREE; case IBM_DTREE: while (t = s->sub.trees.table, s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)) { inflate_huft *h; uInt i, j, c; t = s->sub.trees.bb; NEEDBITS(t) h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]); t = h->bits; c = h->base; if (c < 16) { DUMPBITS(t) s->sub.trees.blens[s->sub.trees.index++] = c; } else // c == 16..18 { i = c == 18 ? 7 : c - 14; j = c == 18 ? 11 : 3; NEEDBITS(t + i) DUMPBITS(t) j += (uInt)b & inflate_mask[i]; DUMPBITS(i) i = s->sub.trees.index; t = s->sub.trees.table; if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || (c == 16 && i < 1)) { ZFREE(z, s->sub.trees.blens); s->mode = IBM_BAD; z->msg = (char *)"invalid bit length repeat"; r = Z_DATA_ERROR; LEAVE } c = c == 16 ? s->sub.trees.blens[i - 1] : 0; do { s->sub.trees.blens[i++] = c; } while (--j); s->sub.trees.index = i; } } s->sub.trees.tb = Z_NULL; { uInt bl, bd; inflate_huft *tl, *td; inflate_codes_statef *c; bl = 9; // must be <= 9 for lookahead assumptions bd = 6; // must be <= 9 for lookahead assumptions t = s->sub.trees.table; t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), s->sub.trees.blens, &bl, &bd, &tl, &td, s->hufts, z); if (t != Z_OK) { if (t == (uInt)Z_DATA_ERROR) { ZFREE(z, s->sub.trees.blens); s->mode = IBM_BAD; } r = t; LEAVE } LuTracev((stderr, "inflate: trees ok\n")); if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL) { r = Z_MEM_ERROR; LEAVE } s->sub.decode.codes = c; } ZFREE(z, s->sub.trees.blens); s->mode = IBM_CODES; case IBM_CODES: UPDATE if ((r = inflate_codes(s, z, r)) != Z_STREAM_END) return inflate_flush(s, z, r); r = Z_OK; inflate_codes_free(s->sub.decode.codes, z); LOAD LuTracev((stderr, "inflate: codes end, %lu total out\n", z->total_out + (q >= s->read ? q - s->read : (s->end - s->read) + (q - s->window)))); if (!s->last) { s->mode = IBM_TYPE; break; } s->mode = IBM_DRY; case IBM_DRY: FLUSH if (s->read != s->write) LEAVE s->mode = IBM_DONE; case IBM_DONE: r = Z_STREAM_END; LEAVE case IBM_BAD: r = Z_DATA_ERROR; LEAVE default: r = Z_STREAM_ERROR; LEAVE } } int inflate_blocks_free(inflate_blocks_statef *s, z_streamp z) { inflate_blocks_reset(s, z, Z_NULL); ZFREE(z, s->window); ZFREE(z, s->hufts); ZFREE(z, s); LuTracev((stderr, "inflate: blocks freed\n")); return Z_OK; } // inftrees.c -- generate Huffman trees for efficient decoding // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // extern const char inflate_copyright[] = " inflate 1.1.3 Copyright 1995-1998 Mark Adler "; // If you use the zlib library in a product, an acknowledgment is welcome // in the documentation of your product. If for some reason you cannot // include such an acknowledgment, I would appreciate that you keep this // copyright string in the executable of your product. int huft_build ( uInt *, // code lengths in bits uInt, // number of codes uInt, // number of "simple" codes const uInt *, // list of base values for non-simple codes const uInt *, // list of extra bits for non-simple codes inflate_huft **,// result: starting table uInt *, // maximum lookup bits (returns actual) inflate_huft *, // space for trees uInt *, // hufts used in space uInt * ); // space for values // Tables for deflate from PKZIP's appnote.txt. const uInt cplens[31] = // Copy lengths for literal codes 257..285 { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 }; // see note #13 above about 258 const uInt cplext[31] = // Extra bits for literal codes 257..285 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112 }; // 112==invalid const uInt cpdist[30] = // Copy offsets for distance codes 0..29 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577 }; const uInt cpdext[30] = // Extra bits for distance codes { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 }; // // Huffman code decoding is performed using a multi-level table lookup. // The fastest way to decode is to simply build a lookup table whose // size is determined by the longest code. However, the time it takes // to build this table can also be a factor if the data being decoded // is not very long. The most common codes are necessarily the // shortest codes, so those codes dominate the decoding time, and hence // the speed. The idea is you can have a shorter table that decodes the // shorter, more probable codes, and then point to subsidiary tables for // the longer codes. The time it costs to decode the longer codes is // then traded against the time it takes to make longer tables. // // This results of this trade are in the variables lbits and dbits // below. lbits is the number of bits the first level table for literal/ // length codes can decode in one step, and dbits is the same thing for // the distance codes. Subsequent tables are also less than or equal to // those sizes. These values may be adjusted either when all of the // codes are shorter than that, in which case the longest code length in // bits is used, or when the shortest code is *longer* than the requested // table size, in which case the length of the shortest code in bits is // used. // // There are two different values for the two tables, since they code a // different number of possibilities each. The literal/length table // codes 286 possible values, or in a flat code, a little over eight // bits. The distance table codes 30 possible values, or a little less // than five bits, flat. The optimum values for speed end up being // about one bit more than those, so lbits is 8+1 and dbits is 5+1. // The optimum values may differ though from machine to machine, and // possibly even between compilers. Your mileage may vary. // // If BMAX needs to be larger than 16, then h and x[] should be uLong. #define BMAX 15 // maximum bit length of any code int huft_build( uInt *b, // code lengths in bits (all assumed <= BMAX) uInt n, // number of codes (assumed <= 288) uInt s, // number of simple-valued codes (0..s-1) const uInt *d, // list of base values for non-simple codes const uInt *e, // list of extra bits for non-simple codes inflate_huft * *t, // result: starting table uInt *m, // maximum lookup bits, returns actual inflate_huft *hp, // space for trees uInt *hn, // hufts used in space uInt *v) // working area: values in order of bit length // Given a list of code lengths and a maximum table size, make a set of // tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR // if the given code set is incomplete (the tables are still built in this // case), or Z_DATA_ERROR if the input is invalid. { uInt a; // counter for codes of length k uInt c[BMAX + 1]; // bit length count table uInt f; // i repeats in table every f entries int g; // maximum code length int h; // table level register uInt i; // counter, current code register uInt j; // counter register int k; // number of bits in current code int l; // bits per table (returned in m) uInt mask; // (1 << w) - 1, to avoid cc -O bug on HP register uInt *p; // pointer into c[], b[], or v[] inflate_huft *q; // points to current table struct inflate_huft_s r; // table entry for structure assignment inflate_huft *u[BMAX]; // table stack register int w; // bits before this table == (l * h) uInt x[BMAX + 1]; // bit offsets, then code stack uInt *xp; // pointer into x int y; // number of dummy codes added uInt z; // number of entries in current table // Generate counts for each bit length p = c; #define C0 *p++ = 0; #define C2 C0 C0 C0 C0 #define C4 C2 C2 C2 C2 C4; p; // clear c[]--assume BMAX+1 is 16 p = b; i = n; do { c[*p++]++; // assume all entries <= BMAX } while (--i); if (c[0] == n) // null input--all zero length codes { *t = (inflate_huft *)Z_NULL; *m = 0; return Z_OK; } // Find minimum and maximum length, bound *m by those l = *m; for (j = 1; j <= BMAX; j++) if (c[j]) break; k = j; // minimum code length if ((uInt)l < j) l = j; for (i = BMAX; i; i--) if (c[i]) break; g = i; // maximum code length if ((uInt)l > i) l = i; *m = l; // Adjust last length count to fill out codes, if needed for (y = 1 << j; j < i; j++, y <<= 1) if ((y -= c[j]) < 0) return Z_DATA_ERROR; if ((y -= c[i]) < 0) return Z_DATA_ERROR; c[i] += y; // Generate starting offsets into the value table for each length x[1] = j = 0; p = c + 1; xp = x + 2; while (--i) // note that i == g from above { *xp++ = (j += *p++); } // Make a table of values in order of bit lengths p = b; i = 0; do { if ((j = *p++) != 0) v[x[j]++] = i; } while (++i < n); n = x[g]; // set n to length of v // Generate the Huffman codes and for each, make the table entries x[0] = i = 0; // first Huffman code is zero p = v; // grab values in bit order h = -1; // no tables yet--level -1 w = -l; // bits decoded == (l * h) u[0] = (inflate_huft *)Z_NULL; // just to keep compilers happy q = (inflate_huft *)Z_NULL; // ditto z = 0; // ditto // go through the bit lengths (k already is bits in shortest code) for (; k <= g; k++) { a = c[k]; while (a--) { // here i is the Huffman code of length k bits for value *p // make tables up to required level while (k > w + l) { h++; w += l; // previous table always l bits // compute minimum size table less than or equal to l bits z = g - w; z = z > (uInt)l ? l : z; // table size upper limit if ((f = 1 << (j = k - w)) > a + 1) // try a k-w bit table { // too few codes for k-w bit table f -= a + 1; // deduct codes from patterns left xp = c + k; if (j < z) while (++j < z) // try smaller tables up to z bits { if ((f <<= 1) <= *++xp) break; // enough codes to use up j bits f -= *xp; // else deduct codes from patterns } } z = 1 << j; // table entries for j-bit table // allocate new table if (*hn + z > MANY) // (note: doesn't matter for fixed) return Z_DATA_ERROR; // overflow of MANY u[h] = q = hp + *hn; *hn += z; // connect to last table, if there is one if (h) { x[h] = i; // save pattern for backing up r.bits = (Byte)l; // bits to dump before this table r.exop = (Byte)j; // bits in this table j = i >> (w - l); r.base = (uInt)(q - u[h - 1] - j); // offset to this table u[h - 1][j] = r; // connect to last table } else *t = q; // first table is returned result } // set up table entry in r r.bits = (Byte)(k - w); if (p >= v + n) r.exop = 128 + 64; // out of values--invalid code else if (*p < s) { r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); // 256 is end-of-block r.base = *p++; // simple code is just the value } else { r.exop = (Byte)(e[*p - s] + 16 + 64);// non-simple--look up in lists r.base = d[*p++ - s]; } // fill code-like entries with r f = 1 << (k - w); for (j = i >> w; j < z; j += f) q[j] = r; // backwards increment the k-bit code i for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j; i ^= j; // backup over finished tables mask = (1 << w) - 1; // needed on HP, cc -O bug while ((i & mask) != x[h]) { h--; // don't need to update q w -= l; mask = (1 << w) - 1; } } } // Return Z_BUF_ERROR if we were given an incomplete table return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; } int inflate_trees_bits( uInt *c, // 19 code lengths uInt *bb, // bits tree desired/actual depth inflate_huft * *tb, // bits tree result inflate_huft *hp, // space for trees z_streamp z) // for messages { int r; uInt hn = 0; // hufts used in space uInt *v; // work area for huft_build if ((v = (uInt *)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL) return Z_MEM_ERROR; r = huft_build(c, 19, 19, (uInt *)Z_NULL, (uInt *)Z_NULL, tb, bb, hp, &hn, v); if (r == Z_DATA_ERROR) z->msg = (char *)"oversubscribed dynamic bit lengths tree"; else if (r == Z_BUF_ERROR || *bb == 0) { z->msg = (char *)"incomplete dynamic bit lengths tree"; r = Z_DATA_ERROR; } ZFREE(z, v); return r; } int inflate_trees_dynamic( uInt nl, // number of literal/length codes uInt nd, // number of distance codes uInt *c, // that many (total) code lengths uInt *bl, // literal desired/actual bit depth uInt *bd, // distance desired/actual bit depth inflate_huft * *tl, // literal/length tree result inflate_huft * *td, // distance tree result inflate_huft *hp, // space for trees z_streamp z) // for messages { int r; uInt hn = 0; // hufts used in space uInt *v; // work area for huft_build // allocate work area if ((v = (uInt *)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) return Z_MEM_ERROR; // build literal/length tree r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v); if (r != Z_OK || *bl == 0) { if (r == Z_DATA_ERROR) z->msg = (char *)"oversubscribed literal/length tree"; else if (r != Z_MEM_ERROR) { z->msg = (char *)"incomplete literal/length tree"; r = Z_DATA_ERROR; } ZFREE(z, v); return r; } // build distance tree r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v); if (r != Z_OK || (*bd == 0 && nl > 257)) { if (r == Z_DATA_ERROR) z->msg = (char *)"oversubscribed distance tree"; else if (r == Z_BUF_ERROR) { z->msg = (char *)"incomplete distance tree"; r = Z_DATA_ERROR; } else if (r != Z_MEM_ERROR) { z->msg = (char *)"empty distance tree with lengths"; r = Z_DATA_ERROR; } ZFREE(z, v); return r; } // done ZFREE(z, v); return Z_OK; } int inflate_trees_fixed( uInt *bl, // literal desired/actual bit depth uInt *bd, // distance desired/actual bit depth const inflate_huft * * tl, // literal/length tree result const inflate_huft * *td, // distance tree result z_streamp ) // for memory allocation { *bl = fixed_bl; *bd = fixed_bd; *tl = fixed_tl; *td = fixed_td; return Z_OK; } // inffast.c -- process literals and length/distance pairs fast // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // //struct inflate_codes_state {int dummy;}; // for buggy compilers // macros for bit input with no checking and for returning unused bytes #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}} #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;} // Called with number of bytes left to write in window at least 258 // (the maximum string length) and number of input bytes available // at least ten. The ten bytes are six bytes for the longest length/ // distance pair plus four bytes for overloading the bit buffer. int inflate_fast( uInt bl, uInt bd, const inflate_huft *tl, const inflate_huft *td, // need separate declaration for Borland C++ inflate_blocks_statef *s, z_streamp z) { const inflate_huft *t; // temporary pointer uInt e; // extra bits or operation uLong b; // bit buffer uInt k; // bits in bit buffer Byte *p; // input data pointer uInt n; // bytes available there Byte *q; // output window write pointer uInt m; // bytes to end of window or read pointer uInt ml; // mask for literal/length tree uInt md; // mask for distance tree uInt c; // bytes to copy uInt d; // distance back to copy from Byte *r; // copy source pointer // load input, output, bit values LOAD // initialize masks ml = inflate_mask[bl]; md = inflate_mask[bd]; // do until not enough input or output space for fast loop do // assume called with m >= 258 && n >= 10 { // get literal/length code GRABBITS(20) // max bits for literal/length code if ((e = (t = tl + ((uInt)b & ml))->exop) == 0) { DUMPBITS(t->bits) LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: * literal '%c'\n" : "inflate: * literal 0x%02x\n", t->base)); *q++ = (Byte)t->base; m--; continue; } for (;;) { DUMPBITS(t->bits) if (e & 16) { // get extra bits for length e &= 15; c = t->base + ((uInt)b & inflate_mask[e]); DUMPBITS(e) LuTracevv((stderr, "inflate: * length %u\n", c)); // decode distance base of block to copy GRABBITS(15); // max bits for distance code e = (t = td + ((uInt)b & md))->exop; for (;;) { DUMPBITS(t->bits) if (e & 16) { // get extra bits to add to distance base e &= 15; GRABBITS(e) // get extra bits (up to 13) d = t->base + ((uInt)b & inflate_mask[e]); DUMPBITS(e) LuTracevv((stderr, "inflate: * distance %u\n", d)); // do the copy m -= c; r = q - d; if (r < s->window) // wrap if needed { do { r += s->end - s->window; // force pointer in window } while (r < s->window); // covers invalid distances e = (uInt) (s->end - r); if (c > e) { c -= e; // wrapped copy do { *q++ = *r++; } while (--e); r = s->window; do { *q++ = *r++; } while (--c); } else // normal copy { *q++ = *r++; c--; *q++ = *r++; c--; do { *q++ = *r++; } while (--c); } } else /* normal copy */ { *q++ = *r++; c--; *q++ = *r++; c--; do { *q++ = *r++; } while (--c); } break; } else if ((e & 64) == 0) { t += t->base; e = (t += ((uInt)b & inflate_mask[e]))->exop; } else { z->msg = (char *)"invalid distance code"; UNGRAB UPDATE return Z_DATA_ERROR; } }; break; } if ((e & 64) == 0) { t += t->base; if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0) { DUMPBITS(t->bits) LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: * literal '%c'\n" : "inflate: * literal 0x%02x\n", t->base)); *q++ = (Byte)t->base; m--; break; } } else if (e & 32) { LuTracevv((stderr, "inflate: * end of block\n")); UNGRAB UPDATE return Z_STREAM_END; } else { z->msg = (char *)"invalid literal/length code"; UNGRAB UPDATE return Z_DATA_ERROR; } }; } while (m >= 258 && n >= 10); // not enough input or output--restore pointers and return UNGRAB UPDATE return Z_OK; } // crc32.c -- compute the CRC-32 of a data stream // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // @(#) $Id$ // Table of CRC-32's of all single-byte values (made by make_crc_table) const uLong crc_table[256] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; const uLong *get_crc_table() { return (const uLong *)crc_table; } #define CRC_DO1(buf) crc = crc_table[((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8); #define CRC_DO2(buf) CRC_DO1(buf); CRC_DO1(buf); #define CRC_DO4(buf) CRC_DO2(buf); CRC_DO2(buf); #define CRC_DO8(buf) CRC_DO4(buf); CRC_DO4(buf); uLong ucrc32(uLong crc, const Byte *buf, uInt len) { if (buf == Z_NULL) return 0L; crc = crc ^ 0xffffffffL; while (len >= 8) { CRC_DO8(buf); len -= 8; } if (len) do { CRC_DO1(buf); } while (--len); return crc ^ 0xffffffffL; } // ============================================================= // some decryption routines #define CRC32(c, b) (crc_table[((int)(c)^(b))&0xff]^((c)>>8)) void Uupdate_keys(unsigned long *keys, char c) { keys[0] = CRC32(keys[0], c); keys[1] += keys[0] & 0xFF; keys[1] = keys[1] * 134775813L + 1; keys[2] = CRC32(keys[2], keys[1] >> 24); } char Udecrypt_byte(unsigned long *keys) { unsigned temp = ((unsigned)keys[2] & 0xffff) | 2; return (char)(((temp * (temp ^ 1)) >> 8) & 0xff); } char zdecode(unsigned long *keys, char c) { c ^= Udecrypt_byte(keys); Uupdate_keys(keys, c); return c; } // adler32.c -- compute the Adler-32 checksum of a data stream // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // @(#) $Id$ #define BASE 65521L // largest prime smaller than 65536 #define NMAX 5552 // NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 #define AD_DO1(buf,i) {s1 += buf[i]; s2 += s1;} #define AD_DO2(buf,i) AD_DO1(buf,i); AD_DO1(buf,i+1); #define AD_DO4(buf,i) AD_DO2(buf,i); AD_DO2(buf,i+2); #define AD_DO8(buf,i) AD_DO4(buf,i); AD_DO4(buf,i+4); #define AD_DO16(buf) AD_DO8(buf,0); AD_DO8(buf,8); // ========================================================================= uLong adler32(uLong adler, const Byte *buf, uInt len) { unsigned long s1 = adler & 0xffff; unsigned long s2 = (adler >> 16) & 0xffff; int k; if (buf == Z_NULL) return 1L; while (len > 0) { k = len < NMAX ? len : NMAX; len -= k; while (k >= 16) { AD_DO16(buf); buf += 16; k -= 16; } if (k != 0) do { s1 += *buf++; s2 += s1; } while (--k); s1 %= BASE; s2 %= BASE; } return (s2 << 16) | s1; } // zutil.c -- target dependent utility functions for the compression library // Copyright (C) 1995-1998 Jean-loup Gailly. // For conditions of distribution and use, see copyright notice in zlib.h // @(#) $Id$ const char *zlibVersion() { return ZLIB_VERSION; } // exported to allow conversion of error code to string for compress() and // uncompress() const char *zError(int err) { return ERR_MSG(err); } voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) { if (opaque) items += size - size; // make compiler happy return (voidpf)calloc(items, size); } void zcfree (voidpf opaque, voidpf ptr) { zfree(ptr); if (opaque) return; // make compiler happy } // inflate.c -- zlib interface to inflate modules // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h //struct inflate_blocks_state {int dummy;}; // for buggy compilers typedef enum { IM_METHOD, // waiting for method byte IM_FLAG, // waiting for flag byte IM_DICT4, // four dictionary check bytes to go IM_DICT3, // three dictionary check bytes to go IM_DICT2, // two dictionary check bytes to go IM_DICT1, // one dictionary check byte to go IM_DICT0, // waiting for inflateSetDictionary IM_BLOCKS, // decompressing blocks IM_CHECK4, // four check bytes to go IM_CHECK3, // three check bytes to go IM_CHECK2, // two check bytes to go IM_CHECK1, // one check byte to go IM_DONE, // finished check, done IM_BAD } // got an error--stay here inflate_mode; // inflate private state struct internal_state { // mode inflate_mode mode; // current inflate mode // mode dependent information union { uInt method; // if IM_FLAGS, method byte struct { uLong was; // computed check value uLong need; // stream check value } check; // if CHECK, check values to compare uInt marker; // if IM_BAD, inflateSync's marker bytes count } sub; // submode // mode independent information int nowrap; // flag for no wrapper uInt wbits; // log2(window size) (8..15, defaults to 15) inflate_blocks_statef *blocks; // current inflate_blocks state }; int inflateReset(z_streamp z) { if (z == Z_NULL || z->state == Z_NULL) return Z_STREAM_ERROR; z->total_in = z->total_out = 0; z->msg = Z_NULL; z->state->mode = z->state->nowrap ? IM_BLOCKS : IM_METHOD; inflate_blocks_reset(z->state->blocks, z, Z_NULL); LuTracev((stderr, "inflate: reset\n")); return Z_OK; } int inflateEnd(z_streamp z) { if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL) return Z_STREAM_ERROR; if (z->state->blocks != Z_NULL) inflate_blocks_free(z->state->blocks, z); ZFREE(z, z->state); z->state = Z_NULL; LuTracev((stderr, "inflate: end\n")); return Z_OK; } int inflateInit2(z_streamp z) { const char *version = ZLIB_VERSION; int stream_size = sizeof(z_stream); if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != sizeof(z_stream)) return Z_VERSION_ERROR; int w = -15; // MAX_WBITS: 32K LZ77 window. // Warning: reducing MAX_WBITS makes minigzip unable to extract .gz files created by gzip. // The memory requirements for deflate are (in bytes): // (1 << (windowBits+2)) + (1 << (memLevel+9)) // that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) // plus a few kilobytes for small objects. For example, if you want to reduce // the default memory requirements from 256K to 128K, compile with // make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" // Of course this will generally degrade compression (there's no free lunch). // // The memory requirements for inflate are (in bytes) 1 << windowBits // that is, 32K for windowBits=15 (default value) plus a few kilobytes // for small objects. // initialize state if (z == Z_NULL) return Z_STREAM_ERROR; z->msg = Z_NULL; if (z->zalloc == Z_NULL) { z->zalloc = zcalloc; z->opaque = (voidpf)0; } if (z->zfree == Z_NULL) z->zfree = zcfree; if ((z->state = (struct internal_state *) ZALLOC(z, 1, sizeof(struct internal_state))) == Z_NULL) return Z_MEM_ERROR; z->state->blocks = Z_NULL; // handle undocumented nowrap option (no zlib header or check) z->state->nowrap = 0; if (w < 0) { w = - w; z->state->nowrap = 1; } // set window size if (w < 8 || w > 15) { inflateEnd(z); return Z_STREAM_ERROR; } z->state->wbits = (uInt)w; // create inflate_blocks state if ((z->state->blocks = inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w)) == Z_NULL) { inflateEnd(z); return Z_MEM_ERROR; } LuTracev((stderr, "inflate: allocated\n")); // reset state inflateReset(z); return Z_OK; } #define IM_NEEDBYTE {if(z->avail_in==0)return r;r=f;} #define IM_NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++) int inflate(z_streamp z, int f) { int r; uInt b; if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL) return Z_STREAM_ERROR; f = f == Z_FINISH ? Z_BUF_ERROR : Z_OK; r = Z_BUF_ERROR; for (;;) switch (z->state->mode) { case IM_METHOD: IM_NEEDBYTE if (((z->state->sub.method = IM_NEXTBYTE) & 0xf) != Z_DEFLATED) { z->state->mode = IM_BAD; z->msg = (char *)"unknown compression method"; z->state->sub.marker = 5; // can't try inflateSync break; } if ((z->state->sub.method >> 4) + 8 > z->state->wbits) { z->state->mode = IM_BAD; z->msg = (char *)"invalid window size"; z->state->sub.marker = 5; // can't try inflateSync break; } z->state->mode = IM_FLAG; case IM_FLAG: IM_NEEDBYTE b = IM_NEXTBYTE; if (((z->state->sub.method << 8) + b) % 31) { z->state->mode = IM_BAD; z->msg = (char *)"incorrect header check"; z->state->sub.marker = 5; // can't try inflateSync break; } LuTracev((stderr, "inflate: zlib header ok\n")); if (!(b & PRESET_DICT)) { z->state->mode = IM_BLOCKS; break; } z->state->mode = IM_DICT4; case IM_DICT4: IM_NEEDBYTE z->state->sub.check.need = (uLong)IM_NEXTBYTE << 24; z->state->mode = IM_DICT3; case IM_DICT3: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 16; z->state->mode = IM_DICT2; case IM_DICT2: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 8; z->state->mode = IM_DICT1; case IM_DICT1: IM_NEEDBYTE; r; z->state->sub.check.need += (uLong)IM_NEXTBYTE; z->adler = z->state->sub.check.need; z->state->mode = IM_DICT0; return Z_NEED_DICT; case IM_DICT0: z->state->mode = IM_BAD; z->msg = (char *)"need dictionary"; z->state->sub.marker = 0; // can try inflateSync return Z_STREAM_ERROR; case IM_BLOCKS: r = inflate_blocks(z->state->blocks, z, r); if (r == Z_DATA_ERROR) { z->state->mode = IM_BAD; z->state->sub.marker = 0; // can try inflateSync break; } if (r == Z_OK) r = f; if (r != Z_STREAM_END) return r; r = f; inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was); if (z->state->nowrap) { z->state->mode = IM_DONE; break; } z->state->mode = IM_CHECK4; case IM_CHECK4: IM_NEEDBYTE z->state->sub.check.need = (uLong)IM_NEXTBYTE << 24; z->state->mode = IM_CHECK3; case IM_CHECK3: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 16; z->state->mode = IM_CHECK2; case IM_CHECK2: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 8; z->state->mode = IM_CHECK1; case IM_CHECK1: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE; if (z->state->sub.check.was != z->state->sub.check.need) { z->state->mode = IM_BAD; z->msg = (char *)"incorrect data check"; z->state->sub.marker = 5; // can't try inflateSync break; } LuTracev((stderr, "inflate: zlib check ok\n")); z->state->mode = IM_DONE; case IM_DONE: return Z_STREAM_END; case IM_BAD: return Z_DATA_ERROR; default: return Z_STREAM_ERROR; } } // unzip.c -- IO on .zip files using zlib // Version 0.15 beta, Mar 19th, 1998, // Read unzip.h for more info #define UNZ_BUFSIZE (16384) #define UNZ_MAXFILENAMEINZIP (256) #define SIZECENTRALDIRITEM (0x2e) #define SIZEZIPLOCALHEADER (0x1e) const char unz_copyright[] = " unzip 0.15 Copyright 1998 Gilles Vollant "; // unz_file_info_interntal contain internal info about a file in zipfile typedef struct unz_file_info_internal_s { uLong offset_curfile;// relative offset of local header 4 bytes } unz_file_info_internal; typedef struct { bool is_handle; // either a handle or memory bool canseek; // for handles: HANDLE h; bool herr; unsigned long initial_offset; bool mustclosehandle; // for memory: void *buf; unsigned int len, pos; // if it's a memory block } LUFILE; LUFILE *lufopen(void *z, unsigned int len, DWORD flags, ZRESULT *err) { if (flags != ZIP_HANDLE && flags != ZIP_FILENAME && flags != ZIP_MEMORY) { *err = ZR_ARGS; return NULL; } // HANDLE h = 0; bool canseek = false; *err = ZR_OK; bool mustclosehandle = false; if (flags == ZIP_HANDLE || flags == ZIP_FILENAME) { if (flags == ZIP_HANDLE) { HANDLE hf = z; h = hf; mustclosehandle = false; #ifdef DuplicateHandle BOOL res = DuplicateHandle(GetCurrentProcess(), hf, GetCurrentProcess(), &h, 0, FALSE, DUPLICATE_SAME_ACCESS); if (!res) mustclosehandle = true; #endif } else { h = CreateFile((const TCHAR *)z, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (h == INVALID_HANDLE_VALUE) { *err = ZR_NOFILE; return NULL; } mustclosehandle = true; } // test if we can seek on it. We can't use GetFileType(h)==FILE_TYPE_DISK since it's not on CE. DWORD res = SetFilePointer(h, 0, 0, FILE_CURRENT); canseek = (res != 0xFFFFFFFF); } LUFILE *lf = new LUFILE; if (flags == ZIP_HANDLE || flags == ZIP_FILENAME) { lf->is_handle = true; lf->mustclosehandle = mustclosehandle; lf->canseek = canseek; lf->h = h; lf->herr = false; lf->initial_offset = 0; if (canseek) lf->initial_offset = SetFilePointer(h, 0, NULL, FILE_CURRENT); } else { lf->is_handle = false; lf->canseek = true; lf->mustclosehandle = false; lf->buf = z; lf->len = len; lf->pos = 0; lf->initial_offset = 0; } *err = ZR_OK; return lf; } int lufclose(LUFILE *stream) { if (stream == NULL) return EOF; if (stream->mustclosehandle) CloseHandle(stream->h); delete stream; return 0; } int luferror(LUFILE *stream) { if (stream->is_handle && stream->herr) return 1; else return 0; } long int luftell(LUFILE *stream) { if (stream->is_handle && stream->canseek) return SetFilePointer(stream->h, 0, NULL, FILE_CURRENT) - stream->initial_offset; else if (stream->is_handle) return 0; else return stream->pos; } int lufseek(LUFILE *stream, long offset, int whence) { if (stream->is_handle && stream->canseek) { if (whence == SEEK_SET) SetFilePointer(stream->h, stream->initial_offset + offset, 0, FILE_BEGIN); else if (whence == SEEK_CUR) SetFilePointer(stream->h, offset, NULL, FILE_CURRENT); else if (whence == SEEK_END) SetFilePointer(stream->h, offset, NULL, FILE_END); else return 19; // EINVAL return 0; } else if (stream->is_handle) return 29; // ESPIPE else { if (whence == SEEK_SET) stream->pos = offset; else if (whence == SEEK_CUR) stream->pos += offset; else if (whence == SEEK_END) stream->pos = stream->len + offset; return 0; } } size_t lufread(void *ptr, size_t size, size_t n, LUFILE *stream) { unsigned int toread = (unsigned int)(size * n); if (stream->is_handle) { DWORD red; BOOL res = ReadFile(stream->h, ptr, toread, &red, NULL); if (!res) stream->herr = true; return red / size; } if (stream->pos + toread > stream->len) toread = stream->len - stream->pos; memcpy(ptr, (char *)stream->buf + stream->pos, toread); DWORD red = toread; stream->pos += red; return red / size; } // file_in_zip_read_info_s contain internal information about a file in zipfile, // when reading and decompress it typedef struct { char *read_buffer; // internal buffer for compressed data z_stream stream; // zLib stream structure for inflate uLong pos_in_zipfile; // position in byte on the zipfile, for fseek uLong stream_initialised; // flag set if stream structure is initialised uLong offset_local_extrafield;// offset of the local extra field uInt size_local_extrafield;// size of the local extra field uLong pos_local_extrafield; // position in the local extra field in read uLong crc32; // crc32 of all data uncompressed uLong crc32_wait; // crc32 we must obtain after decompress all uLong rest_read_compressed; // number of byte to be decompressed uLong rest_read_uncompressed;//number of byte to be obtained after decomp LUFILE *file; // io structore of the zipfile uLong compression_method; // compression method (0==store) uLong byte_before_the_zipfile;// byte before the zipfile, (>0 for sfx) bool encrypted; // is it encrypted? unsigned long keys[3]; // decryption keys, initialized by unzOpenCurrentFile int encheadleft; // the first call(s) to unzReadCurrentFile will read this many encryption-header bytes first char crcenctest; // if encrypted, we'll check the encryption buffer against this } file_in_zip_read_info_s; // unz_s contain internal information about the zipfile typedef struct { LUFILE *file; // io structore of the zipfile unz_global_info gi; // public global information uLong byte_before_the_zipfile;// byte before the zipfile, (>0 for sfx) uLong num_file; // number of the current file in the zipfile uLong pos_in_central_dir; // pos of the current file in the central dir uLong current_file_ok; // flag about the usability of the current file uLong central_pos; // position of the beginning of the central dir uLong size_central_dir; // size of the central directory uLong offset_central_dir; // offset of start of central directory with respect to the starting disk number unz_file_info cur_file_info; // public info about the current file in zip unz_file_info_internal cur_file_info_internal; // private info about it file_in_zip_read_info_s *pfile_in_zip_read; // structure about the current file if we are decompressing it } unz_s, *unzFile; int unzStringFileNameCompare (const char *fileName1, const char *fileName2, int iCaseSensitivity); // Compare two filename (fileName1,fileName2). z_off_t unztell (unzFile file); // Give the current position in uncompressed data int unzeof (unzFile file); // return 1 if the end of file was reached, 0 elsewhere int unzGetLocalExtrafield (unzFile file, voidp buf, unsigned len); // Read extra field from the current file (opened by unzOpenCurrentFile) // This is the local-header version of the extra field (sometimes, there is // more info in the local-header version than in the central-header) // // if buf==NULL, it return the size of the local extra field // // if buf!=NULL, len is the size of the buffer, the extra header is copied in // buf. // the return value is the number of bytes copied in buf, or (if <0) // the error code // =========================================================================== // Read a byte from a gz_stream; update next_in and avail_in. Return EOF // for end of file. // IN assertion: the stream s has been sucessfully opened for reading. int unzlocal_getByte(LUFILE *fin, int *pi) { unsigned char c; int err = (int)lufread(&c, 1, 1, fin); if (err == 1) { *pi = (int)c; return UNZ_OK; } else { if (luferror(fin)) return UNZ_ERRNO; else return UNZ_EOF; } } // =========================================================================== // Reads a long in LSB order from the given gz_stream. Sets int unzlocal_getShort (LUFILE *fin, uLong *pX) { uLong x ; int i; int err; err = unzlocal_getByte(fin, &i); x = (uLong)i; if (err == UNZ_OK) err = unzlocal_getByte(fin, &i); x += ((uLong)i) << 8; if (err == UNZ_OK) *pX = x; else *pX = 0; return err; } int unzlocal_getLong (LUFILE *fin, uLong *pX) { uLong x ; int i; int err; err = unzlocal_getByte(fin, &i); x = (uLong)i; if (err == UNZ_OK) err = unzlocal_getByte(fin, &i); x += ((uLong)i) << 8; if (err == UNZ_OK) err = unzlocal_getByte(fin, &i); x += ((uLong)i) << 16; if (err == UNZ_OK) err = unzlocal_getByte(fin, &i); x += ((uLong)i) << 24; if (err == UNZ_OK) *pX = x; else *pX = 0; return err; } // My own strcmpi / strcasecmp int strcmpcasenosensitive_internal (const char *fileName1, const char *fileName2) { for (;;) { char c1 = *(fileName1++); char c2 = *(fileName2++); if ((c1 >= 'a') && (c1 <= 'z')) c1 -= (char)0x20; if ((c2 >= 'a') && (c2 <= 'z')) c2 -= (char)0x20; if (c1 == '\0') return ((c2 == '\0') ? 0 : -1); if (c2 == '\0') return 1; if (c1 < c2) return -1; if (c1 > c2) return 1; } } // // Compare two filename (fileName1,fileName2). // If iCaseSenisivity = 1, comparision is case sensitivity (like strcmp) // If iCaseSenisivity = 2, comparision is not case sensitivity (like strcmpi or strcasecmp) // int unzStringFileNameCompare (const char *fileName1, const char *fileName2, int iCaseSensitivity) { if (iCaseSensitivity == 1) return strcmp(fileName1, fileName2); else return strcmpcasenosensitive_internal(fileName1, fileName2); } #define BUFREADCOMMENT (0x400) // Locate the Central directory of a zipfile (at the end, just before // the global comment). Lu bugfix 2005.07.26 - returns 0xFFFFFFFF if not found, // rather than 0, since 0 is a valid central-dir-location for an empty zipfile. uLong unzlocal_SearchCentralDir(LUFILE *fin) { if (lufseek(fin, 0, SEEK_END) != 0) return 0xFFFFFFFF; uLong uSizeFile = luftell(fin); uLong uMaxBack = 0xffff; // maximum size of global comment if (uMaxBack > uSizeFile) uMaxBack = uSizeFile; unsigned char *buf = (unsigned char *)zmalloc(BUFREADCOMMENT + 4); if (buf == NULL) return 0xFFFFFFFF; uLong uPosFound = 0xFFFFFFFF; uLong uBackRead = 4; while (uBackRead < uMaxBack) { uLong uReadSize, uReadPos ; int i; if (uBackRead + BUFREADCOMMENT > uMaxBack) uBackRead = uMaxBack; else uBackRead += BUFREADCOMMENT; uReadPos = uSizeFile - uBackRead ; uReadSize = ((BUFREADCOMMENT + 4) < (uSizeFile - uReadPos)) ? (BUFREADCOMMENT + 4) : (uSizeFile - uReadPos); if (lufseek(fin, uReadPos, SEEK_SET) != 0) break; if (lufread(buf, (uInt)uReadSize, 1, fin) != 1) break; for (i = (int)uReadSize - 3; (i--) >= 0;) { if (((*(buf + i)) == 0x50) && ((*(buf + i + 1)) == 0x4b) && ((*(buf + i + 2)) == 0x05) && ((*(buf + i + 3)) == 0x06)) { uPosFound = uReadPos + i; break; } } if (uPosFound != 0) break; } if (buf) zfree(buf); return uPosFound; } int unzGoToFirstFile (unzFile file); int unzCloseCurrentFile (unzFile file); // Open a Zip file. // If the zipfile cannot be opened (file don't exist or in not valid), return NULL. // Otherwise, the return value is a unzFile Handle, usable with other unzip functions unzFile unzOpenInternal(LUFILE *fin) { if (fin == NULL) return NULL; if (unz_copyright[0] != ' ') { lufclose(fin); return NULL; } int err = UNZ_OK; unz_s us; uLong central_pos, uL; central_pos = unzlocal_SearchCentralDir(fin); if (central_pos == 0xFFFFFFFF) err = UNZ_ERRNO; if (lufseek(fin, central_pos, SEEK_SET) != 0) err = UNZ_ERRNO; // the signature, already checked if (unzlocal_getLong(fin, &uL) != UNZ_OK) err = UNZ_ERRNO; // number of this disk uLong number_disk; // number of the current dist, used for spanning ZIP, unsupported, always 0 if (unzlocal_getShort(fin, &number_disk) != UNZ_OK) err = UNZ_ERRNO; // number of the disk with the start of the central directory uLong number_disk_with_CD; // number the the disk with central dir, used for spaning ZIP, unsupported, always 0 if (unzlocal_getShort(fin, &number_disk_with_CD) != UNZ_OK) err = UNZ_ERRNO; // total number of entries in the central dir on this disk if (unzlocal_getShort(fin, &us.gi.number_entry) != UNZ_OK) err = UNZ_ERRNO; // total number of entries in the central dir uLong number_entry_CD; // total number of entries in the central dir (same than number_entry on nospan) if (unzlocal_getShort(fin, &number_entry_CD) != UNZ_OK) err = UNZ_ERRNO; if ((number_entry_CD != us.gi.number_entry) || (number_disk_with_CD != 0) || (number_disk != 0)) err = UNZ_BADZIPFILE; // size of the central directory if (unzlocal_getLong(fin, &us.size_central_dir) != UNZ_OK) err = UNZ_ERRNO; // offset of start of central directory with respect to the starting disk number if (unzlocal_getLong(fin, &us.offset_central_dir) != UNZ_OK) err = UNZ_ERRNO; // zipfile comment length if (unzlocal_getShort(fin, &us.gi.size_comment) != UNZ_OK) err = UNZ_ERRNO; if ((central_pos + fin->initial_offset < us.offset_central_dir + us.size_central_dir) && (err == UNZ_OK)) err = UNZ_BADZIPFILE; if (err != UNZ_OK) { lufclose(fin); return NULL; } us.file = fin; us.byte_before_the_zipfile = central_pos + fin->initial_offset - (us.offset_central_dir + us.size_central_dir); us.central_pos = central_pos; us.pfile_in_zip_read = NULL; fin->initial_offset = 0; // since the zipfile itself is expected to handle this unz_s *s = (unz_s *)zmalloc(sizeof(unz_s)); *s = us; unzGoToFirstFile((unzFile)s); return (unzFile)s; } // Close a ZipFile opened with unzipOpen. // If there is files inside the .Zip opened with unzipOpenCurrentFile (see later), // these files MUST be closed with unzipCloseCurrentFile before call unzipClose. // return UNZ_OK if there is no problem. int unzClose (unzFile file) { unz_s *s; if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; if (s->pfile_in_zip_read != NULL) unzCloseCurrentFile(file); lufclose(s->file); if (s) zfree(s); // unused s=0; return UNZ_OK; } // Write info about the ZipFile in the *pglobal_info structure. // No preparation of the structure is needed // return UNZ_OK if there is no problem. int unzGetGlobalInfo (unzFile file, unz_global_info *pglobal_info) { unz_s *s; if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; *pglobal_info = s->gi; return UNZ_OK; } // Translate date/time from Dos format to tm_unz (readable more easilty) void unzlocal_DosDateToTmuDate (uLong ulDosDate, tm_unz *ptm) { uLong uDate; uDate = (uLong)(ulDosDate >> 16); ptm->tm_mday = (uInt)(uDate & 0x1f) ; ptm->tm_mon = (uInt)((((uDate) & 0x1E0) / 0x20) - 1) ; ptm->tm_year = (uInt)(((uDate & 0x0FE00) / 0x0200) + 1980) ; ptm->tm_hour = (uInt) ((ulDosDate & 0xF800) / 0x800); ptm->tm_min = (uInt) ((ulDosDate & 0x7E0) / 0x20) ; ptm->tm_sec = (uInt) (2 * (ulDosDate & 0x1f)) ; } // Get Info about the current file in the zipfile, with internal only info int unzlocal_GetCurrentFileInfoInternal (unzFile file, unz_file_info *pfile_info, unz_file_info_internal *pfile_info_internal, char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize, char *szComment, uLong commentBufferSize); int unzlocal_GetCurrentFileInfoInternal (unzFile file, unz_file_info *pfile_info, unz_file_info_internal *pfile_info_internal, char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize, char *szComment, uLong commentBufferSize) { unz_s *s; unz_file_info file_info; unz_file_info_internal file_info_internal; int err = UNZ_OK; uLong uMagic; long lSeek = 0; if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; if (lufseek(s->file, s->pos_in_central_dir + s->byte_before_the_zipfile, SEEK_SET) != 0) err = UNZ_ERRNO; // we check the magic if (err == UNZ_OK) if (unzlocal_getLong(s->file, &uMagic) != UNZ_OK) err = UNZ_ERRNO; else if (uMagic != 0x02014b50) err = UNZ_BADZIPFILE; if (unzlocal_getShort(s->file, &file_info.version) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getShort(s->file, &file_info.version_needed) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getShort(s->file, &file_info.flag) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getShort(s->file, &file_info.compression_method) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getLong(s->file, &file_info.dosDate) != UNZ_OK) err = UNZ_ERRNO; unzlocal_DosDateToTmuDate(file_info.dosDate, &file_info.tmu_date); if (unzlocal_getLong(s->file, &file_info.crc) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getLong(s->file, &file_info.compressed_size) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getLong(s->file, &file_info.uncompressed_size) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getShort(s->file, &file_info.size_filename) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getShort(s->file, &file_info.size_file_extra) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getShort(s->file, &file_info.size_file_comment) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getShort(s->file, &file_info.disk_num_start) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getShort(s->file, &file_info.internal_fa) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getLong(s->file, &file_info.external_fa) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getLong(s->file, &file_info_internal.offset_curfile) != UNZ_OK) err = UNZ_ERRNO; lSeek += file_info.size_filename; if ((err == UNZ_OK) && (szFileName != NULL)) { uLong uSizeRead ; if (file_info.size_filename < fileNameBufferSize) { *(szFileName + file_info.size_filename) = '\0'; uSizeRead = file_info.size_filename; } else uSizeRead = fileNameBufferSize; if ((file_info.size_filename > 0) && (fileNameBufferSize > 0)) if (lufread(szFileName, (uInt)uSizeRead, 1, s->file) != 1) err = UNZ_ERRNO; lSeek -= uSizeRead; } if ((err == UNZ_OK) && (extraField != NULL)) { uLong uSizeRead ; if (file_info.size_file_extra < extraFieldBufferSize) uSizeRead = file_info.size_file_extra; else uSizeRead = extraFieldBufferSize; if (lSeek != 0) if (lufseek(s->file, lSeek, SEEK_CUR) == 0) lSeek = 0; else err = UNZ_ERRNO; if ((file_info.size_file_extra > 0) && (extraFieldBufferSize > 0)) if (lufread(extraField, (uInt)uSizeRead, 1, s->file) != 1) err = UNZ_ERRNO; lSeek += file_info.size_file_extra - uSizeRead; } else lSeek += file_info.size_file_extra; if ((err == UNZ_OK) && (szComment != NULL)) { uLong uSizeRead ; if (file_info.size_file_comment < commentBufferSize) { *(szComment + file_info.size_file_comment) = '\0'; uSizeRead = file_info.size_file_comment; } else uSizeRead = commentBufferSize; if (lSeek != 0) if (lufseek(s->file, lSeek, SEEK_CUR) == 0) {} // unused lSeek=0; else err = UNZ_ERRNO; if ((file_info.size_file_comment > 0) && (commentBufferSize > 0)) if (lufread(szComment, (uInt)uSizeRead, 1, s->file) != 1) err = UNZ_ERRNO; //unused lSeek+=file_info.size_file_comment - uSizeRead; } else {} //unused lSeek+=file_info.size_file_comment; if ((err == UNZ_OK) && (pfile_info != NULL)) *pfile_info = file_info; if ((err == UNZ_OK) && (pfile_info_internal != NULL)) *pfile_info_internal = file_info_internal; return err; } // Write info about the ZipFile in the *pglobal_info structure. // No preparation of the structure is needed // return UNZ_OK if there is no problem. int unzGetCurrentFileInfo (unzFile file, unz_file_info *pfile_info, char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize, char *szComment, uLong commentBufferSize) { return unzlocal_GetCurrentFileInfoInternal(file, pfile_info, NULL, szFileName, fileNameBufferSize, extraField, extraFieldBufferSize, szComment, commentBufferSize); } // Set the current file of the zipfile to the first file. // return UNZ_OK if there is no problem int unzGoToFirstFile (unzFile file) { int err; unz_s *s; if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; s->pos_in_central_dir = s->offset_central_dir; s->num_file = 0; err = unzlocal_GetCurrentFileInfoInternal(file, &s->cur_file_info, &s->cur_file_info_internal, NULL, 0, NULL, 0, NULL, 0); s->current_file_ok = (err == UNZ_OK); return err; } // Set the current file of the zipfile to the next file. // return UNZ_OK if there is no problem // return UNZ_END_OF_LIST_OF_FILE if the actual file was the latest. int unzGoToNextFile (unzFile file) { unz_s *s; int err; if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; if (!s->current_file_ok) return UNZ_END_OF_LIST_OF_FILE; if (s->num_file + 1 == s->gi.number_entry) return UNZ_END_OF_LIST_OF_FILE; s->pos_in_central_dir += SIZECENTRALDIRITEM + s->cur_file_info.size_filename + s->cur_file_info.size_file_extra + s->cur_file_info.size_file_comment ; s->num_file++; err = unzlocal_GetCurrentFileInfoInternal(file, &s->cur_file_info, &s->cur_file_info_internal, NULL, 0, NULL, 0, NULL, 0); s->current_file_ok = (err == UNZ_OK); return err; } // Try locate the file szFileName in the zipfile. // For the iCaseSensitivity signification, see unzStringFileNameCompare // return value : // UNZ_OK if the file is found. It becomes the current file. // UNZ_END_OF_LIST_OF_FILE if the file is not found int unzLocateFile (unzFile file, const char *szFileName, int iCaseSensitivity) { unz_s *s; int err; uLong num_fileSaved; uLong pos_in_central_dirSaved; if (file == NULL) return UNZ_PARAMERROR; if (strlen(szFileName) >= UNZ_MAXFILENAMEINZIP) return UNZ_PARAMERROR; s = (unz_s *)file; if (!s->current_file_ok) return UNZ_END_OF_LIST_OF_FILE; num_fileSaved = s->num_file; pos_in_central_dirSaved = s->pos_in_central_dir; err = unzGoToFirstFile(file); while (err == UNZ_OK) { char szCurrentFileName[UNZ_MAXFILENAMEINZIP + 1]; unzGetCurrentFileInfo(file, NULL, szCurrentFileName, sizeof(szCurrentFileName) - 1, NULL, 0, NULL, 0); if (unzStringFileNameCompare(szCurrentFileName, szFileName, iCaseSensitivity) == 0) return UNZ_OK; err = unzGoToNextFile(file); } s->num_file = num_fileSaved ; s->pos_in_central_dir = pos_in_central_dirSaved ; return err; } // Read the local header of the current zipfile // Check the coherency of the local header and info in the end of central // directory about this file // store in *piSizeVar the size of extra info in local header // (filename and size of extra field data) int unzlocal_CheckCurrentFileCoherencyHeader (unz_s *s, uInt *piSizeVar, uLong *poffset_local_extrafield, uInt *psize_local_extrafield) { uLong uMagic, uData, uFlags; uLong size_filename; uLong size_extra_field; int err = UNZ_OK; *piSizeVar = 0; *poffset_local_extrafield = 0; *psize_local_extrafield = 0; if (lufseek(s->file, s->cur_file_info_internal.offset_curfile + s->byte_before_the_zipfile, SEEK_SET) != 0) return UNZ_ERRNO; if (err == UNZ_OK) if (unzlocal_getLong(s->file, &uMagic) != UNZ_OK) err = UNZ_ERRNO; else if (uMagic != 0x04034b50) err = UNZ_BADZIPFILE; if (unzlocal_getShort(s->file, &uData) != UNZ_OK) err = UNZ_ERRNO; // else if ((err==UNZ_OK) && (uData!=s->cur_file_info.wVersion)) // err=UNZ_BADZIPFILE; if (unzlocal_getShort(s->file, &uFlags) != UNZ_OK) err = UNZ_ERRNO; if (unzlocal_getShort(s->file, &uData) != UNZ_OK) err = UNZ_ERRNO; else if ((err == UNZ_OK) && (uData != s->cur_file_info.compression_method)) err = UNZ_BADZIPFILE; if ((err == UNZ_OK) && (s->cur_file_info.compression_method != 0) && (s->cur_file_info.compression_method != Z_DEFLATED)) err = UNZ_BADZIPFILE; if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // date/time err = UNZ_ERRNO; if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // crc err = UNZ_ERRNO; else if ((err == UNZ_OK) && (uData != s->cur_file_info.crc) && ((uFlags & 8) == 0)) err = UNZ_BADZIPFILE; if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // size compr err = UNZ_ERRNO; else if ((err == UNZ_OK) && (uData != s->cur_file_info.compressed_size) && ((uFlags & 8) == 0)) err = UNZ_BADZIPFILE; if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // size uncompr err = UNZ_ERRNO; else if ((err == UNZ_OK) && (uData != s->cur_file_info.uncompressed_size) && ((uFlags & 8) == 0)) err = UNZ_BADZIPFILE; if (unzlocal_getShort(s->file, &size_filename) != UNZ_OK) err = UNZ_ERRNO; else if ((err == UNZ_OK) && (size_filename != s->cur_file_info.size_filename)) err = UNZ_BADZIPFILE; *piSizeVar += (uInt)size_filename; if (unzlocal_getShort(s->file, &size_extra_field) != UNZ_OK) err = UNZ_ERRNO; *poffset_local_extrafield = s->cur_file_info_internal.offset_curfile + SIZEZIPLOCALHEADER + size_filename; *psize_local_extrafield = (uInt)size_extra_field; *piSizeVar += (uInt)size_extra_field; return err; } // Open for reading data the current file in the zipfile. // If there is no error and the file is opened, the return value is UNZ_OK. int unzOpenCurrentFile (unzFile file, const char *password) { int err; int Store; uInt iSizeVar; unz_s *s; file_in_zip_read_info_s *pfile_in_zip_read_info; uLong offset_local_extrafield; // offset of the local extra field uInt size_local_extrafield; // size of the local extra field if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; if (!s->current_file_ok) return UNZ_PARAMERROR; if (s->pfile_in_zip_read != NULL) unzCloseCurrentFile(file); if (unzlocal_CheckCurrentFileCoherencyHeader(s, &iSizeVar, &offset_local_extrafield, &size_local_extrafield) != UNZ_OK) return UNZ_BADZIPFILE; pfile_in_zip_read_info = (file_in_zip_read_info_s *)zmalloc(sizeof(file_in_zip_read_info_s)); if (pfile_in_zip_read_info == NULL) return UNZ_INTERNALERROR; pfile_in_zip_read_info->read_buffer = (char *)zmalloc(UNZ_BUFSIZE); pfile_in_zip_read_info->offset_local_extrafield = offset_local_extrafield; pfile_in_zip_read_info->size_local_extrafield = size_local_extrafield; pfile_in_zip_read_info->pos_local_extrafield = 0; if (pfile_in_zip_read_info->read_buffer == NULL) { if (pfile_in_zip_read_info != 0) zfree(pfile_in_zip_read_info); //unused pfile_in_zip_read_info=0; return UNZ_INTERNALERROR; } pfile_in_zip_read_info->stream_initialised = 0; if ((s->cur_file_info.compression_method != 0) && (s->cur_file_info.compression_method != Z_DEFLATED)) { // unused err=UNZ_BADZIPFILE; } Store = s->cur_file_info.compression_method == 0; pfile_in_zip_read_info->crc32_wait = s->cur_file_info.crc; pfile_in_zip_read_info->crc32 = 0; pfile_in_zip_read_info->compression_method = s->cur_file_info.compression_method; pfile_in_zip_read_info->file = s->file; pfile_in_zip_read_info->byte_before_the_zipfile = s->byte_before_the_zipfile; pfile_in_zip_read_info->stream.total_out = 0; if (!Store) { pfile_in_zip_read_info->stream.zalloc = (alloc_func)0; pfile_in_zip_read_info->stream.zfree = (free_func)0; pfile_in_zip_read_info->stream.opaque = (voidpf)0; err = inflateInit2(&pfile_in_zip_read_info->stream); if (err == Z_OK) pfile_in_zip_read_info->stream_initialised = 1; // windowBits is passed < 0 to tell that there is no zlib header. // Note that in this case inflate *requires* an extra "dummy" byte // after the compressed stream in order to complete decompression and // return Z_STREAM_END. // In unzip, i don't wait absolutely Z_STREAM_END because I known the // size of both compressed and uncompressed data } pfile_in_zip_read_info->rest_read_compressed = s->cur_file_info.compressed_size ; pfile_in_zip_read_info->rest_read_uncompressed = s->cur_file_info.uncompressed_size ; pfile_in_zip_read_info->encrypted = (s->cur_file_info.flag & 1) != 0; bool extlochead = (s->cur_file_info.flag & 8) != 0; if (extlochead) pfile_in_zip_read_info->crcenctest = (char)((s->cur_file_info.dosDate >> 8) & 0xff); else pfile_in_zip_read_info->crcenctest = (char)(s->cur_file_info.crc >> 24); pfile_in_zip_read_info->encheadleft = (pfile_in_zip_read_info->encrypted ? 12 : 0); pfile_in_zip_read_info->keys[0] = 305419896L; pfile_in_zip_read_info->keys[1] = 591751049L; pfile_in_zip_read_info->keys[2] = 878082192L; for (const char *cp = password; cp != 0 && *cp != 0; cp++) Uupdate_keys(pfile_in_zip_read_info->keys, *cp); pfile_in_zip_read_info->pos_in_zipfile = s->cur_file_info_internal.offset_curfile + SIZEZIPLOCALHEADER + iSizeVar; pfile_in_zip_read_info->stream.avail_in = (uInt)0; s->pfile_in_zip_read = pfile_in_zip_read_info; return UNZ_OK; } // Read bytes from the current file. // buf contain buffer where data must be copied // len the size of buf. // return the number of byte copied if somes bytes are copied (and also sets *reached_eof) // return 0 if the end of file was reached. (and also sets *reached_eof). // return <0 with error code if there is an error. (in which case *reached_eof is meaningless) // (UNZ_ERRNO for IO error, or zLib error for uncompress error) int unzReadCurrentFile (unzFile file, voidp buf, unsigned len, bool *reached_eof) { int err = UNZ_OK; uInt iRead = 0; if (reached_eof != 0) *reached_eof = false; unz_s *s = (unz_s *)file; if (s == NULL) return UNZ_PARAMERROR; file_in_zip_read_info_s *pfile_in_zip_read_info = s->pfile_in_zip_read; if (pfile_in_zip_read_info == NULL) return UNZ_PARAMERROR; if ((pfile_in_zip_read_info->read_buffer == NULL)) return UNZ_END_OF_LIST_OF_FILE; if (len == 0) return 0; pfile_in_zip_read_info->stream.next_out = (Byte *)buf; pfile_in_zip_read_info->stream.avail_out = (uInt)len; if (len > pfile_in_zip_read_info->rest_read_uncompressed) { pfile_in_zip_read_info->stream.avail_out = (uInt)pfile_in_zip_read_info->rest_read_uncompressed; } while (pfile_in_zip_read_info->stream.avail_out > 0) { if ((pfile_in_zip_read_info->stream.avail_in == 0) && (pfile_in_zip_read_info->rest_read_compressed > 0)) { uInt uReadThis = UNZ_BUFSIZE; if (pfile_in_zip_read_info->rest_read_compressed < uReadThis) uReadThis = (uInt)pfile_in_zip_read_info->rest_read_compressed; if (uReadThis == 0) { if (reached_eof != 0) *reached_eof = true; return UNZ_EOF; } if (lufseek(pfile_in_zip_read_info->file, pfile_in_zip_read_info->pos_in_zipfile + pfile_in_zip_read_info->byte_before_the_zipfile, SEEK_SET) != 0) return UNZ_ERRNO; if (lufread(pfile_in_zip_read_info->read_buffer, uReadThis, 1, pfile_in_zip_read_info->file) != 1) return UNZ_ERRNO; pfile_in_zip_read_info->pos_in_zipfile += uReadThis; pfile_in_zip_read_info->rest_read_compressed -= uReadThis; pfile_in_zip_read_info->stream.next_in = (Byte *)pfile_in_zip_read_info->read_buffer; pfile_in_zip_read_info->stream.avail_in = (uInt)uReadThis; // if (pfile_in_zip_read_info->encrypted) { char *buf = (char *)pfile_in_zip_read_info->stream.next_in; for (unsigned int i = 0; i < uReadThis; i++) buf[i] = zdecode(pfile_in_zip_read_info->keys, buf[i]); } } unsigned int uDoEncHead = pfile_in_zip_read_info->encheadleft; if (uDoEncHead > pfile_in_zip_read_info->stream.avail_in) uDoEncHead = pfile_in_zip_read_info->stream.avail_in; if (uDoEncHead > 0) { char bufcrc = pfile_in_zip_read_info->stream.next_in[uDoEncHead - 1]; // pfile_in_zip_read_info->rest_read_uncompressed-=uDoEncHead; pfile_in_zip_read_info->stream.avail_in -= uDoEncHead; pfile_in_zip_read_info->stream.next_in += uDoEncHead; pfile_in_zip_read_info->encheadleft -= uDoEncHead; if (pfile_in_zip_read_info->encheadleft == 0) { if (bufcrc != pfile_in_zip_read_info->crcenctest) return UNZ_PASSWORD; } } if (pfile_in_zip_read_info->compression_method == 0) { uInt uDoCopy, i ; if (pfile_in_zip_read_info->stream.avail_out < pfile_in_zip_read_info->stream.avail_in) { uDoCopy = pfile_in_zip_read_info->stream.avail_out ; } else { uDoCopy = pfile_in_zip_read_info->stream.avail_in ; } for (i = 0; i < uDoCopy; i++) *(pfile_in_zip_read_info->stream.next_out + i) = *(pfile_in_zip_read_info->stream.next_in + i); pfile_in_zip_read_info->crc32 = ucrc32(pfile_in_zip_read_info->crc32, pfile_in_zip_read_info->stream.next_out, uDoCopy); pfile_in_zip_read_info->rest_read_uncompressed -= uDoCopy; pfile_in_zip_read_info->stream.avail_in -= uDoCopy; pfile_in_zip_read_info->stream.avail_out -= uDoCopy; pfile_in_zip_read_info->stream.next_out += uDoCopy; pfile_in_zip_read_info->stream.next_in += uDoCopy; pfile_in_zip_read_info->stream.total_out += uDoCopy; iRead += uDoCopy; if (pfile_in_zip_read_info->rest_read_uncompressed == 0) { if (reached_eof != 0) *reached_eof = true; } } else { uLong uTotalOutBefore, uTotalOutAfter; const Byte *bufBefore; uLong uOutThis; int flush = Z_SYNC_FLUSH; uTotalOutBefore = pfile_in_zip_read_info->stream.total_out; bufBefore = pfile_in_zip_read_info->stream.next_out; // err = inflate(&pfile_in_zip_read_info->stream, flush); // uTotalOutAfter = pfile_in_zip_read_info->stream.total_out; uOutThis = uTotalOutAfter - uTotalOutBefore; pfile_in_zip_read_info->crc32 = ucrc32(pfile_in_zip_read_info->crc32, bufBefore, (uInt)(uOutThis)); pfile_in_zip_read_info->rest_read_uncompressed -= uOutThis; iRead += (uInt)(uTotalOutAfter - uTotalOutBefore); if (err == Z_STREAM_END || pfile_in_zip_read_info->rest_read_uncompressed == 0) { if (reached_eof != 0) *reached_eof = true; return iRead; } if (err != Z_OK) break; } } if (err == Z_OK) return iRead; return err; } // Give the current position in uncompressed data z_off_t unztell (unzFile file) { unz_s *s; file_in_zip_read_info_s *pfile_in_zip_read_info; if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; pfile_in_zip_read_info = s->pfile_in_zip_read; if (pfile_in_zip_read_info == NULL) return UNZ_PARAMERROR; return (z_off_t)pfile_in_zip_read_info->stream.total_out; } // return 1 if the end of file was reached, 0 elsewhere int unzeof (unzFile file) { unz_s *s; file_in_zip_read_info_s *pfile_in_zip_read_info; if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; pfile_in_zip_read_info = s->pfile_in_zip_read; if (pfile_in_zip_read_info == NULL) return UNZ_PARAMERROR; if (pfile_in_zip_read_info->rest_read_uncompressed == 0) return 1; else return 0; } // Read extra field from the current file (opened by unzOpenCurrentFile) // This is the local-header version of the extra field (sometimes, there is // more info in the local-header version than in the central-header) // if buf==NULL, it return the size of the local extra field that can be read // if buf!=NULL, len is the size of the buffer, the extra header is copied in buf. // the return value is the number of bytes copied in buf, or (if <0) the error code int unzGetLocalExtrafield (unzFile file, voidp buf, unsigned len) { unz_s *s; file_in_zip_read_info_s *pfile_in_zip_read_info; uInt read_now; uLong size_to_read; if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; pfile_in_zip_read_info = s->pfile_in_zip_read; if (pfile_in_zip_read_info == NULL) return UNZ_PARAMERROR; size_to_read = (pfile_in_zip_read_info->size_local_extrafield - pfile_in_zip_read_info->pos_local_extrafield); if (buf == NULL) return (int)size_to_read; if (len > size_to_read) read_now = (uInt)size_to_read; else read_now = (uInt)len ; if (read_now == 0) return 0; if (lufseek(pfile_in_zip_read_info->file, pfile_in_zip_read_info->offset_local_extrafield + pfile_in_zip_read_info->pos_local_extrafield, SEEK_SET) != 0) return UNZ_ERRNO; if (lufread(buf, (uInt)size_to_read, 1, pfile_in_zip_read_info->file) != 1) return UNZ_ERRNO; return (int)read_now; } // Close the file in zip opened with unzipOpenCurrentFile // Return UNZ_CRCERROR if all the file was read but the CRC is not good int unzCloseCurrentFile (unzFile file) { int err = UNZ_OK; unz_s *s; file_in_zip_read_info_s *pfile_in_zip_read_info; if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; pfile_in_zip_read_info = s->pfile_in_zip_read; if (pfile_in_zip_read_info == NULL) return UNZ_PARAMERROR; if (pfile_in_zip_read_info->rest_read_uncompressed == 0) { if (pfile_in_zip_read_info->crc32 != pfile_in_zip_read_info->crc32_wait) err = UNZ_CRCERROR; } if (pfile_in_zip_read_info->read_buffer != 0) { void *buf = pfile_in_zip_read_info->read_buffer; zfree(buf); pfile_in_zip_read_info->read_buffer = 0; } pfile_in_zip_read_info->read_buffer = NULL; if (pfile_in_zip_read_info->stream_initialised) inflateEnd(&pfile_in_zip_read_info->stream); pfile_in_zip_read_info->stream_initialised = 0; if (pfile_in_zip_read_info != 0) zfree(pfile_in_zip_read_info); // unused pfile_in_zip_read_info=0; s->pfile_in_zip_read = NULL; return err; } // Get the global comment string of the ZipFile, in the szComment buffer. // uSizeBuf is the size of the szComment buffer. // return the number of byte copied or an error code <0 int unzGetGlobalComment (unzFile file, char *szComment, uLong uSizeBuf) { //int err=UNZ_OK; unz_s *s; uLong uReadThis ; if (file == NULL) return UNZ_PARAMERROR; s = (unz_s *)file; uReadThis = uSizeBuf; if (uReadThis > s->gi.size_comment) uReadThis = s->gi.size_comment; if (lufseek(s->file, s->central_pos + 22, SEEK_SET) != 0) return UNZ_ERRNO; if (uReadThis > 0) { *szComment = '\0'; if (lufread(szComment, (uInt)uReadThis, 1, s->file) != 1) return UNZ_ERRNO; } if ((szComment != NULL) && (uSizeBuf > s->gi.size_comment)) *(szComment + s->gi.size_comment) = '\0'; return (int)uReadThis; } int unzOpenCurrentFile (unzFile file, const char *password); int unzReadCurrentFile (unzFile file, void *buf, unsigned len); int unzCloseCurrentFile (unzFile file); typedef unsigned __int32 lutime_t; // define it ourselves since we don't include time.h FILETIME timet2filetime(const lutime_t t) { LONGLONG i = Int32x32To64(t, 10000000) + 116444736000000000; FILETIME ft; ft.dwLowDateTime = (DWORD) i; ft.dwHighDateTime = (DWORD)(i >> 32); return ft; } FILETIME dosdatetime2filetime(WORD dosdate, WORD dostime) { // date: bits 0-4 are day of month 1-31. Bits 5-8 are month 1..12. Bits 9-15 are year-1980 // time: bits 0-4 are seconds/2, bits 5-10 are minute 0..59. Bits 11-15 are hour 0..23 SYSTEMTIME st; st.wYear = (WORD)(((dosdate >> 9) & 0x7f) + 1980); st.wMonth = (WORD)((dosdate >> 5) & 0xf); st.wDay = (WORD)(dosdate & 0x1f); st.wHour = (WORD)((dostime >> 11) & 0x1f); st.wMinute = (WORD)((dostime >> 5) & 0x3f); st.wSecond = (WORD)((dostime & 0x1f) * 2); st.wMilliseconds = 0; FILETIME ft; SystemTimeToFileTime(&st, &ft); return ft; } class TUnzip { public: TUnzip(const char *pwd) : uf(0), unzbuf(0), currentfile(-1), czei(-1), password(0) { if (pwd != 0) { password = new char[strlen(pwd) + 1]; strcpy(password, pwd); } } ~TUnzip() { if (password != 0) delete[] password; password = 0; if (unzbuf != 0) delete[] unzbuf; unzbuf = 0; } unzFile uf; int currentfile; ZIPENTRY cze; int czei; char *password; char *unzbuf; // lazily created and destroyed, used by Unzip TCHAR rootdir[MAX_PATH]; // includes a trailing slash ZRESULT Open(void *z, unsigned int len, DWORD flags); ZRESULT Get(int index, ZIPENTRY *ze); ZRESULT Find(const TCHAR *name, bool ic, int *index, ZIPENTRY *ze); ZRESULT Unzip(int index, void *dst, unsigned int len, DWORD flags); ZRESULT SetUnzipBaseDir(const TCHAR *dir); ZRESULT Close(); }; ZRESULT TUnzip::Open(void *z, unsigned int len, DWORD flags) { if (uf != 0 || currentfile != -1) return ZR_NOTINITED; // #ifdef GetCurrentDirectory GetCurrentDirectory(MAX_PATH, rootdir); #else _tcscpy(rootdir, _T("\\")); #endif TCHAR lastchar = rootdir[_tcslen(rootdir) - 1]; if (lastchar != '\\' && lastchar != '/') _tcscat(rootdir, _T("\\")); // if (flags == ZIP_HANDLE) { // test if we can seek on it. We can't use GetFileType(h)==FILE_TYPE_DISK since it's not on CE. DWORD res = SetFilePointer(z, 0, 0, FILE_CURRENT); bool canseek = (res != 0xFFFFFFFF); if (!canseek) return ZR_SEEK; } ZRESULT e; LUFILE *f = lufopen(z, len, flags, &e); if (f == NULL) return e; uf = unzOpenInternal(f); if (uf == 0) return ZR_NOFILE; return ZR_OK; } ZRESULT TUnzip::SetUnzipBaseDir(const TCHAR *dir) { _tcscpy(rootdir, dir); TCHAR lastchar = rootdir[_tcslen(rootdir) - 1]; if (lastchar != '\\' && lastchar != '/') _tcscat(rootdir, _T("\\")); return ZR_OK; } ZRESULT TUnzip::Get(int index, ZIPENTRY *ze) { if (index < -1 || index >= (int)uf->gi.number_entry) return ZR_ARGS; if (currentfile != -1) unzCloseCurrentFile(uf); currentfile = -1; if (index == czei && index != -1) { memcpy(ze, &cze, sizeof(ZIPENTRY)); return ZR_OK; } if (index == -1) { ze->index = uf->gi.number_entry; ze->name[0] = 0; ze->attr = 0; ze->atime.dwLowDateTime = 0; ze->atime.dwHighDateTime = 0; ze->ctime.dwLowDateTime = 0; ze->ctime.dwHighDateTime = 0; ze->mtime.dwLowDateTime = 0; ze->mtime.dwHighDateTime = 0; ze->comp_size = 0; ze->unc_size = 0; return ZR_OK; } if (index < (int)uf->num_file) unzGoToFirstFile(uf); while ((int)uf->num_file < index) unzGoToNextFile(uf); unz_file_info ufi; char fn[MAX_PATH]; unzGetCurrentFileInfo(uf, &ufi, fn, MAX_PATH, NULL, 0, NULL, 0); // now get the extra header. We do this ourselves, instead of // calling unzOpenCurrentFile &c., to avoid allocating more than necessary. unsigned int extralen, iSizeVar; unsigned long offset; int res = unzlocal_CheckCurrentFileCoherencyHeader(uf, &iSizeVar, &offset, &extralen); if (res != UNZ_OK) return ZR_CORRUPT; if (lufseek(uf->file, offset, SEEK_SET) != 0) return ZR_READ; unsigned char *extra = new unsigned char[extralen]; if (lufread(extra, 1, (uInt)extralen, uf->file) != extralen) { delete[] extra; return ZR_READ; } // ze->index = uf->num_file; TCHAR tfn[MAX_PATH]; #ifdef UNICODE MultiByteToWideChar(CP_UTF8, 0, fn, -1, tfn, MAX_PATH); #else strcpy(tfn, fn); #endif // As a safety feature: if the zip filename had sneaky stuff // like "c:\windows\file.txt" or "\windows\file.txt" or "fred\..\..\..\windows\file.txt" // then we get rid of them all. That way, when the programmer does UnzipItem(hz,i,ze.name), // it won't be a problem. (If the programmer really did want to get the full evil information, // then they can edit out this security feature from here). // In particular, we chop off any prefixes that are "c:\" or "\" or "/" or "[stuff]\.." or "[stuff]/.." const TCHAR *sfn = tfn; for (;;) { if (sfn[0] != 0 && sfn[1] == ':') { sfn += 2; continue; } if (sfn[0] == '\\') { sfn++; continue; } if (sfn[0] == '/') { sfn++; continue; } const TCHAR *c; c = _tcsstr(sfn, _T("\\..\\")); if (c != 0) { sfn = c + 4; continue; } c = _tcsstr(sfn, _T("\\../")); if (c != 0) { sfn = c + 4; continue; } c = _tcsstr(sfn, _T("/../")); if (c != 0) { sfn = c + 4; continue; } c = _tcsstr(sfn, _T("/..\\")); if (c != 0) { sfn = c + 4; continue; } break; } _tcscpy(ze->name, sfn); // zip has an 'attribute' 32bit value. Its lower half is windows stuff // its upper half is standard unix stat.st_mode. We'll start trying // to read it in unix mode unsigned long a = ufi.external_fa; bool isdir = (a & 0x40000000) != 0; bool readonly = (a & 0x00800000) == 0; //bool readable= (a&0x01000000)!=0; // unused //bool executable=(a&0x00400000)!=0; // unused bool hidden = false, system = false, archive = true; // but in normal hostmodes these are overridden by the lower half... int host = ufi.version >> 8; if (host == 0 || host == 7 || host == 11 || host == 14) { readonly = (a & 0x00000001) != 0; hidden = (a & 0x00000002) != 0; system = (a & 0x00000004) != 0; isdir = (a & 0x00000010) != 0; archive = (a & 0x00000020) != 0; } ze->attr = 0; if (isdir) ze->attr |= FILE_ATTRIBUTE_DIRECTORY; if (archive) ze->attr |= FILE_ATTRIBUTE_ARCHIVE; if (hidden) ze->attr |= FILE_ATTRIBUTE_HIDDEN; if (readonly) ze->attr |= FILE_ATTRIBUTE_READONLY; if (system) ze->attr |= FILE_ATTRIBUTE_SYSTEM; ze->comp_size = ufi.compressed_size; ze->unc_size = ufi.uncompressed_size; // WORD dostime = (WORD)(ufi.dosDate & 0xFFFF); WORD dosdate = (WORD)((ufi.dosDate >> 16) & 0xFFFF); FILETIME ftd = dosdatetime2filetime(dosdate, dostime); FILETIME ft; LocalFileTimeToFileTime(&ftd, &ft); ze->atime = ft; ze->ctime = ft; ze->mtime = ft; // the zip will always have at least that dostime. But if it also has // an extra header, then we'll instead get the info from that. unsigned int epos = 0; while (epos + 4 < extralen) { char etype[3]; etype[0] = extra[epos + 0]; etype[1] = extra[epos + 1]; etype[2] = 0; int size = extra[epos + 2]; if (strcmp(etype, "UT") != 0) { epos += 4 + size; continue; } int flags = extra[epos + 4]; bool hasmtime = (flags & 1) != 0; bool hasatime = (flags & 2) != 0; bool hasctime = (flags & 4) != 0; epos += 5; if (hasmtime) { lutime_t mtime = ((extra[epos + 0]) << 0) | ((extra[epos + 1]) << 8) | ((extra[epos + 2]) << 16) | ((extra[epos + 3]) << 24); epos += 4; ze->mtime = timet2filetime(mtime); } if (hasatime) { lutime_t atime = ((extra[epos + 0]) << 0) | ((extra[epos + 1]) << 8) | ((extra[epos + 2]) << 16) | ((extra[epos + 3]) << 24); epos += 4; ze->atime = timet2filetime(atime); } if (hasctime) { lutime_t ctime = ((extra[epos + 0]) << 0) | ((extra[epos + 1]) << 8) | ((extra[epos + 2]) << 16) | ((extra[epos + 3]) << 24); epos += 4; ze->ctime = timet2filetime(ctime); } break; } // if (extra != 0) delete[] extra; memcpy(&cze, ze, sizeof(ZIPENTRY)); czei = index; return ZR_OK; } ZRESULT TUnzip::Find(const TCHAR *tname, bool ic, int *index, ZIPENTRY *ze) { char name[MAX_PATH]; #ifdef UNICODE WideCharToMultiByte(CP_UTF8, 0, tname, -1, name, MAX_PATH, 0, 0); #else strcpy(name, tname); #endif int res = unzLocateFile(uf, name, ic ? CASE_INSENSITIVE : CASE_SENSITIVE); if (res != UNZ_OK) { if (index != 0) *index = -1; if (ze != NULL) { ZeroMemory(ze, sizeof(ZIPENTRY)); ze->index = -1; } return ZR_NOTFOUND; } if (currentfile != -1) unzCloseCurrentFile(uf); currentfile = -1; int i = (int)uf->num_file; if (index != NULL) *index = i; if (ze != NULL) { ZRESULT zres = Get(i, ze); if (zres != ZR_OK) return zres; } return ZR_OK; } void EnsureDirectory(const TCHAR *rootdir, const TCHAR *dir) { if (rootdir != 0 && GetFileAttributes(rootdir) == 0xFFFFFFFF) CreateDirectory(rootdir, 0); if (*dir == 0) return; const TCHAR *lastslash = dir, *c = lastslash; while (*c != 0) { if (*c == '/' || *c == '\\') lastslash = c; c++; } const TCHAR *name = lastslash; if (lastslash != dir) { TCHAR tmp[MAX_PATH]; memcpy(tmp, dir, sizeof(TCHAR) * (lastslash - dir)); tmp[lastslash - dir] = 0; EnsureDirectory(rootdir, tmp); name++; } TCHAR cd[MAX_PATH]; *cd = 0; if (rootdir != 0) _tcscpy(cd, rootdir); _tcscat(cd, dir); if (GetFileAttributes(cd) == 0xFFFFFFFF) CreateDirectory(cd, NULL); } ZRESULT TUnzip::Unzip(int index, void *dst, unsigned int len, DWORD flags) { if (flags != ZIP_MEMORY && flags != ZIP_FILENAME && flags != ZIP_HANDLE) return ZR_ARGS; if (flags == ZIP_MEMORY) { if (index != currentfile) { if (currentfile != -1) unzCloseCurrentFile(uf); currentfile = -1; if (index >= (int)uf->gi.number_entry) return ZR_ARGS; if (index < (int)uf->num_file) unzGoToFirstFile(uf); while ((int)uf->num_file < index) unzGoToNextFile(uf); unzOpenCurrentFile(uf, password); currentfile = index; } bool reached_eof; int res = unzReadCurrentFile(uf, dst, len, &reached_eof); if (res <= 0) { unzCloseCurrentFile(uf); currentfile = -1; } if (reached_eof) return ZR_OK; if (res > 0) return ZR_MORE; if (res == UNZ_PASSWORD) return ZR_PASSWORD; return ZR_FLATE; } // otherwise we're writing to a handle or a file if (currentfile != -1) unzCloseCurrentFile(uf); currentfile = -1; if (index >= (int)uf->gi.number_entry) return ZR_ARGS; if (index < (int)uf->num_file) unzGoToFirstFile(uf); while ((int)uf->num_file < index) unzGoToNextFile(uf); ZIPENTRY ze; Get(index, &ze); // zipentry=directory is handled specially if ((ze.attr & FILE_ATTRIBUTE_DIRECTORY) != 0) { if (flags == ZIP_HANDLE) return ZR_OK; // don't do anything const TCHAR *dir = (const TCHAR *)dst; bool isabsolute = (dir[0] == '/' || dir[0] == '\\' || (dir[0] != 0 && dir[1] == ':')); if (isabsolute) EnsureDirectory(0, dir); else EnsureDirectory(rootdir, dir); return ZR_OK; } // otherwise, we write the zipentry to a file/handle HANDLE h; if (flags == ZIP_HANDLE) h = dst; else { const TCHAR *ufn = (const TCHAR *)dst; // We'll qualify all relative names to our root dir, and leave absolute names as they are // ufn="zipfile.txt" dir="" name="zipfile.txt" fn="c:\\currentdir\\zipfile.txt" // ufn="dir1/dir2/subfile.txt" dir="dir1/dir2/" name="subfile.txt" fn="c:\\currentdir\\dir1/dir2/subfiles.txt" // ufn="\z\file.txt" dir="\z\" name="file.txt" fn="\z\file.txt" // This might be a security risk, in the case where we just use the zipentry's name as "ufn", where // a malicious zip could unzip itself into c:\windows. Our solution is that GetZipItem (which // is how the user retrieve's the file's name within the zip) never returns absolute paths. const TCHAR *name = ufn; const TCHAR *c = name; while (*c != 0) { if (*c == '/' || *c == '\\') name = c + 1; c++; } TCHAR dir[MAX_PATH]; _tcscpy(dir, ufn); if (name == ufn) *dir = 0; else dir[name - ufn] = 0; TCHAR fn[MAX_PATH]; bool isabsolute = (dir[0] == '/' || dir[0] == '\\' || (dir[0] != 0 && dir[1] == ':')); if (isabsolute) { wsprintf(fn, _T("%s%s"), dir, name); EnsureDirectory(0, dir); } else { wsprintf(fn, _T("%s%s%s"), rootdir, dir, name); EnsureDirectory(rootdir, dir); } // h = CreateFile(fn, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, ze.attr, NULL); } if (h == INVALID_HANDLE_VALUE) return ZR_NOFILE; unzOpenCurrentFile(uf, password); if (unzbuf == 0) unzbuf = new char[16384]; DWORD haderr = 0; // for (; haderr == 0;) { bool reached_eof; int res = unzReadCurrentFile(uf, unzbuf, 16384, &reached_eof); if (res == UNZ_PASSWORD) { haderr = ZR_PASSWORD; break; } if (res < 0) { haderr = ZR_FLATE; break; } if (res > 0) { DWORD writ; BOOL bres = WriteFile(h, unzbuf, res, &writ, NULL); if (!bres) { haderr = ZR_WRITE; break; } } if (reached_eof) break; if (res == 0) { haderr = ZR_FLATE; break; } } if (!haderr) SetFileTime(h, &ze.ctime, &ze.atime, &ze.mtime); // may fail if it was a pipe if (flags != ZIP_HANDLE) CloseHandle(h); unzCloseCurrentFile(uf); if (haderr != 0) return haderr; return ZR_OK; } ZRESULT TUnzip::Close() { if (currentfile != -1) unzCloseCurrentFile(uf); currentfile = -1; if (uf != 0) unzClose(uf); uf = 0; return ZR_OK; } ZRESULT lasterrorU = ZR_OK; unsigned int FormatZipMessageU(ZRESULT code, TCHAR *buf, unsigned int len) { if (code == ZR_RECENT) code = lasterrorU; const TCHAR *msg = _T("unknown zip result code"); switch (code) { case ZR_OK: msg = _T("Success"); break; case ZR_NODUPH: msg = _T("Culdn't duplicate handle"); break; case ZR_NOFILE: msg = _T("Couldn't create/open file"); break; case ZR_NOALLOC: msg = _T("Failed to allocate memory"); break; case ZR_WRITE: msg = _T("Error writing to file"); break; case ZR_NOTFOUND: msg = _T("File not found in the zipfile"); break; case ZR_MORE: msg = _T("Still more data to unzip"); break; case ZR_CORRUPT: msg = _T("Zipfile is corrupt or not a zipfile"); break; case ZR_READ: msg = _T("Error reading file"); break; case ZR_PASSWORD: msg = _T("Correct password required"); break; case ZR_ARGS: msg = _T("Caller: faulty arguments"); break; case ZR_PARTIALUNZ: msg = _T("Caller: the file had already been partially unzipped"); break; case ZR_NOTMMAP: msg = _T("Caller: can only get memory of a memory zipfile"); break; case ZR_MEMSIZE: msg = _T("Caller: not enough space allocated for memory zipfile"); break; case ZR_FAILED: msg = _T("Caller: there was a previous error"); break; case ZR_ENDED: msg = _T("Caller: additions to the zip have already been ended"); break; case ZR_ZMODE: msg = _T("Caller: mixing creation and opening of zip"); break; case ZR_NOTINITED: msg = _T("Zip-bug: internal initialisation not completed"); break; case ZR_SEEK: msg = _T("Zip-bug: trying to seek the unseekable"); break; case ZR_MISSIZE: msg = _T("Zip-bug: the anticipated size turned out wrong"); break; case ZR_NOCHANGE: msg = _T("Zip-bug: tried to change mind, but not allowed"); break; case ZR_FLATE: msg = _T("Zip-bug: an internal error during flation"); break; } unsigned int mlen = (unsigned int)_tcslen(msg); if (buf == 0 || len == 0) return mlen; unsigned int n = mlen; if (n + 1 > len) n = len - 1; _tcsncpy(buf, msg, n); buf[n] = 0; return mlen; } typedef struct { DWORD flag; TUnzip *unz; } TUnzipHandleData; HZIP OpenZipInternal(void *z, unsigned int len, DWORD flags, const char *password) { TUnzip *unz = new TUnzip(password); lasterrorU = unz->Open(z, len, flags); if (lasterrorU != ZR_OK) { delete unz; return 0; } TUnzipHandleData *han = new TUnzipHandleData; han->flag = 1; han->unz = unz; return (HZIP)han; } HZIP OpenZipHandle(HANDLE h, const char *password) { return OpenZipInternal((void *)h, 0, ZIP_HANDLE, password); } HZIP OpenZip(const TCHAR *fn, const char *password) { return OpenZipInternal((void *)fn, 0, ZIP_FILENAME, password); } HZIP OpenZip(void *z, unsigned int len, const char *password) { return OpenZipInternal(z, len, ZIP_MEMORY, password); } ZRESULT GetZipItem(HZIP hz, int index, ZIPENTRY *ze) { ze->index = 0; *ze->name = 0; ze->unc_size = 0; if (hz == 0) { lasterrorU = ZR_ARGS; return ZR_ARGS; } TUnzipHandleData *han = (TUnzipHandleData *)hz; if (han->flag != 1) { lasterrorU = ZR_ZMODE; return ZR_ZMODE; } TUnzip *unz = han->unz; lasterrorU = unz->Get(index, ze); return lasterrorU; } ZRESULT FindZipItem(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze) { if (hz == 0) { lasterrorU = ZR_ARGS; return ZR_ARGS; } TUnzipHandleData *han = (TUnzipHandleData *)hz; if (han->flag != 1) { lasterrorU = ZR_ZMODE; return ZR_ZMODE; } TUnzip *unz = han->unz; lasterrorU = unz->Find(name, ic, index, ze); return lasterrorU; } ZRESULT UnzipItemInternal(HZIP hz, int index, void *dst, unsigned int len, DWORD flags) { if (hz == 0) { lasterrorU = ZR_ARGS; return ZR_ARGS; } TUnzipHandleData *han = (TUnzipHandleData *)hz; if (han->flag != 1) { lasterrorU = ZR_ZMODE; return ZR_ZMODE; } TUnzip *unz = han->unz; lasterrorU = unz->Unzip(index, dst, len, flags); return lasterrorU; } ZRESULT UnzipItemHandle(HZIP hz, int index, HANDLE h) { return UnzipItemInternal(hz, index, (void *)h, 0, ZIP_HANDLE); } ZRESULT UnzipItem(HZIP hz, int index, const TCHAR *fn) { return UnzipItemInternal(hz, index, (void *)fn, 0, ZIP_FILENAME); } ZRESULT UnzipItem(HZIP hz, int index, void *z, unsigned int len) { return UnzipItemInternal(hz, index, z, len, ZIP_MEMORY); } ZRESULT SetUnzipBaseDir(HZIP hz, const TCHAR *dir) { if (hz == 0) { lasterrorU = ZR_ARGS; return ZR_ARGS; } TUnzipHandleData *han = (TUnzipHandleData *)hz; if (han->flag != 1) { lasterrorU = ZR_ZMODE; return ZR_ZMODE; } TUnzip *unz = han->unz; lasterrorU = unz->SetUnzipBaseDir(dir); return lasterrorU; } ZRESULT CloseZipU(HZIP hz) { if (hz == 0) { lasterrorU = ZR_ARGS; return ZR_ARGS; } TUnzipHandleData *han = (TUnzipHandleData *)hz; if (han->flag != 1) { lasterrorU = ZR_ZMODE; return ZR_ZMODE; } TUnzip *unz = han->unz; lasterrorU = unz->Close(); delete unz; delete han; return lasterrorU; } bool IsZipHandleU(HZIP hz) { if (hz == 0) return false; TUnzipHandleData *han = (TUnzipHandleData *)hz; return (han->flag == 1); }
//unzip.h #ifndef _unzip_H #define _unzip_H // UNZIPPING functions -- for unzipping. // This file is a repackaged form of extracts from the zlib code available // at www.gzip.org/zlib, by Jean-Loup Gailly and Mark Adler. The original // copyright notice may be found in unzip.cpp. The repackaging was done // by Lucian Wischik to simplify and extend its use in Windows/C++. Also // encryption and unicode filenames have been added. #ifndef _zip_H DECLARE_HANDLE(HZIP); #endif // An HZIP identifies a zip file that has been opened typedef DWORD ZRESULT; // return codes from any of the zip functions. Listed later. typedef struct { int index; // index of this file within the zip TCHAR name[MAX_PATH]; // filename within the zip DWORD attr; // attributes, as in GetFileAttributes. FILETIME atime,ctime,mtime;// access, create, modify filetimes long comp_size; // sizes of item, compressed and uncompressed. These long unc_size; // may be -1 if not yet known (e.g. being streamed in) } ZIPENTRY; HZIP OpenZip(const TCHAR *fn, const char *password); HZIP OpenZip(void *z,unsigned int len, const char *password); HZIP OpenZipHandle(HANDLE h, const char *password); // OpenZip - opens a zip file and returns a handle with which you can // subsequently examine its contents. You can open a zip file from: // from a pipe: OpenZipHandle(hpipe_read,0); // from a file (by handle): OpenZipHandle(hfile,0); // from a file (by name): OpenZip("c:\\test.zip","password"); // from a memory block: OpenZip(bufstart, buflen,0); // If the file is opened through a pipe, then items may only be // accessed in increasing order, and an item may only be unzipped once, // although GetZipItem can be called immediately before and after unzipping // it. If it's opened in any other way, then full random access is possible. // Note: pipe input is not yet implemented. // Note: zip passwords are ascii, not unicode. // Note: for windows-ce, you cannot close the handle until after CloseZip. // but for real windows, the zip makes its own copy of your handle, so you // can close yours anytime. ZRESULT GetZipItem(HZIP hz, int index, ZIPENTRY *ze); // GetZipItem - call this to get information about an item in the zip. // If index is -1 and the file wasn't opened through a pipe, // then it returns information about the whole zipfile // (and in particular ze.index returns the number of index items). // Note: the item might be a directory (ze.attr & FILE_ATTRIBUTE_DIRECTORY) // See below for notes on what happens when you unzip such an item. // Note: if you are opening the zip through a pipe, then random access // is not possible and GetZipItem(-1) fails and you can't discover the number // of items except by calling GetZipItem on each one of them in turn, // starting at 0, until eventually the call fails. Also, in the event that // you are opening through a pipe and the zip was itself created into a pipe, // then then comp_size and sometimes unc_size as well may not be known until // after the item has been unzipped. ZRESULT FindZipItem(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze); // FindZipItem - finds an item by name. ic means 'insensitive to case'. // It returns the index of the item, and returns information about it. // If nothing was found, then index is set to -1 and the function returns // an error code. ZRESULT UnzipItem(HZIP hz, int index, const TCHAR *fn); ZRESULT UnzipItem(HZIP hz, int index, void *z,unsigned int len); ZRESULT UnzipItemHandle(HZIP hz, int index, HANDLE h); // UnzipItem - given an index to an item, unzips it. You can unzip to: // to a pipe: UnzipItemHandle(hz,i, hpipe_write); // to a file (by handle): UnzipItemHandle(hz,i, hfile); // to a file (by name): UnzipItem(hz,i, ze.name); // to a memory block: UnzipItem(hz,i, buf,buflen); // In the final case, if the buffer isn't large enough to hold it all, // then the return code indicates that more is yet to come. If it was // large enough, and you want to know precisely how big, GetZipItem. // Note: zip files are normally stored with relative pathnames. If you // unzip with ZIP_FILENAME a relative pathname then the item gets created // relative to the current directory - it first ensures that all necessary // subdirectories have been created. Also, the item may itself be a directory. // If you unzip a directory with ZIP_FILENAME, then the directory gets created. // If you unzip it to a handle or a memory block, then nothing gets created // and it emits 0 bytes. ZRESULT SetUnzipBaseDir(HZIP hz, const TCHAR *dir); // if unzipping to a filename, and it's a relative filename, then it will be relative to here. // (defaults to current-directory). ZRESULT CloseZip(HZIP hz); // CloseZip - the zip handle must be closed with this function. unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf,unsigned int len); // FormatZipMessage - given an error code, formats it as a string. // It returns the length of the error message. If buf/len points // to a real buffer, then it also writes as much as possible into there. // These are the result codes: #define ZR_OK 0x00000000 // nb. the pseudo-code zr-recent is never returned, #define ZR_RECENT 0x00000001 // but can be passed to FormatZipMessage. // The following come from general system stuff (e.g. files not openable) #define ZR_GENMASK 0x0000FF00 #define ZR_NODUPH 0x00000100 // couldn't duplicate the handle #define ZR_NOFILE 0x00000200 // couldn't create/open the file #define ZR_NOALLOC 0x00000300 // failed to allocate some resource #define ZR_WRITE 0x00000400 // a general error writing to the file #define ZR_NOTFOUND 0x00000500 // couldn't find that file in the zip #define ZR_MORE 0x00000600 // there's still more data to be unzipped #define ZR_CORRUPT 0x00000700 // the zipfile is corrupt or not a zipfile #define ZR_READ 0x00000800 // a general error reading the file #define ZR_PASSWORD 0x00001000 // we didn't get the right password to unzip the file // The following come from mistakes on the part of the caller #define ZR_CALLERMASK 0x00FF0000 #define ZR_ARGS 0x00010000 // general mistake with the arguments #define ZR_NOTMMAP 0x00020000 // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn't #define ZR_MEMSIZE 0x00030000 // the memory size is too small #define ZR_FAILED 0x00040000 // the thing was already failed when you called this function #define ZR_ENDED 0x00050000 // the zip creation has already been closed #define ZR_MISSIZE 0x00060000 // the indicated input file size turned out mistaken #define ZR_PARTIALUNZ 0x00070000 // the file had already been partially unzipped #define ZR_ZMODE 0x00080000 // tried to mix creating/opening a zip // The following come from bugs within the zip library itself #define ZR_BUGMASK 0xFF000000 #define ZR_NOTINITED 0x01000000 // initialisation didn't work #define ZR_SEEK 0x02000000 // trying to seek in an unseekable file #define ZR_NOCHANGE 0x04000000 // changed its mind on storage, but not allowed #define ZR_FLATE 0x05000000 // an internal error in the de/inflation code // e.g. // // SetCurrentDirectory("c:\\docs\\stuff"); // HZIP hz = OpenZip("c:\\stuff.zip",0); // ZIPENTRY ze; GetZipItem(hz,-1,&ze); int numitems=ze.index; // for (int i=0; i<numitems; i++) // { GetZipItem(hz,i,&ze); // UnzipItem(hz,i,ze.name); // } // CloseZip(hz); // // // HRSRC hrsrc = FindResource(hInstance,MAKEINTRESOURCE(1),RT_RCDATA); // HANDLE hglob = LoadResource(hInstance,hrsrc); // void *zipbuf=LockResource(hglob); // unsigned int ziplen=SizeofResource(hInstance,hrsrc); // HZIP hz = OpenZip(zipbuf, ziplen, 0); // - unzip to a membuffer - // ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze); // char *ibuf = new char[ze.unc_size]; // UnzipItem(hz,i, ibuf, ze.unc_size); // delete[] ibuf; // - unzip to a fixed membuff - // ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze); // char ibuf[1024]; ZRESULT zr=ZR_MORE; unsigned long totsize=0; // while (zr==ZR_MORE) // { zr = UnzipItem(hz,i, ibuf,1024); // unsigned long bufsize=1024; if (zr==ZR_OK) bufsize=ze.unc_size-totsize; // totsize+=bufsize; // } // - unzip to a pipe - // HANDLE hwrite; HANDLE hthread=CreateWavReaderThread(&hwrite); // int i; ZIPENTRY ze; FindZipItem(hz,"sound.wav",true,&i,&ze); // UnzipItemHandle(hz,i, hwrite); // CloseHandle(hwrite); // WaitForSingleObject(hthread,INFINITE); // CloseHandle(hwrite); CloseHandle(hthread); // - finished - // CloseZip(hz); // // note: no need to free resources obtained through Find/Load/LockResource // // // SetCurrentDirectory("c:\\docs\\pipedzipstuff"); // HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,0,0); // CreateZipWriterThread(hwrite); // HZIP hz = OpenZipHandle(hread,0); // for (int i=0; ; i++) // { ZIPENTRY ze; // ZRESULT zr=GetZipItem(hz,i,&ze); if (zr!=ZR_OK) break; // no more // UnzipItem(hz,i, ze.name); // } // CloseZip(hz); // // // Now we indulge in a little skullduggery so that the code works whether // the user has included just zip or both zip and unzip. // Idea: if header files for both zip and unzip are present, then presumably // the cpp files for zip and unzip are both present, so we will call // one or the other of them based on a dynamic choice. If the header file // for only one is present, then we will bind to that particular one. ZRESULT CloseZipU(HZIP hz); unsigned int FormatZipMessageU(ZRESULT code, TCHAR *buf,unsigned int len); bool IsZipHandleU(HZIP hz); #ifdef _zip_H #undef CloseZip #define CloseZip(hz) (IsZipHandleU(hz)?CloseZipU(hz):CloseZipZ(hz)) #else #define CloseZip CloseZipU #define FormatZipMessage FormatZipMessageU #endif #endif // _unzip_H
//main.cpp #include <Windows.h> #include <stdio.h> #include "unzip.h" int main() { HZIP hz = OpenZip("c:\\symbols.zip","password"); SetUnzipBaseDir(hz,"c:\\unzip"); ZIPENTRY ze; GetZipItem(hz,-1,&ze); int numitems=ze.index; for (int i=0; i<numitems; i++) { GetZipItem(hz,i,&ze); if(ze.attr & FILE_ATTRIBUTE_DIRECTORY) { printf("find a dir \n"); } printf("-->%s \n",ze.name); UnzipItem(hz,i,ze.name); } CloseZip(hz); return 0; }