说明一下:下边的例子就是<Java数据结构和算法>书的一个例子,并非我所写的,这一本书我觉得是最好 的一本java数据结构的入门书籍.现在把这一个例子记录在blog上,当作温习一下啦。
无向图的广度搜索的规则有如下:
规则1、访问下一个未来访问的邻接点(如果存在),这个顶点必须是当前顶点的邻接点,标点它,并把它插入到队列中。
规则2、如果因为已经没有未访顶点而不能执行规则1,那么从队列取一个顶点(如果存在),并使其成为当前的顶点。
规则3、如果因为队列为空而不能执行规则2,则搜索结束。
下面是实例的代码:
class Queue
{
private final int SIZE = 20;
private int[] queArray;
private int front;
private int rear;
public Queue() // constructor
{
queArray = new int[SIZE];
front = 0;
rear = -1;
}
public void insert(int j) // put item at rear of queue
{
if(rear == SIZE-1)
rear = -1;
queArray[++rear] = j;
}
public int remove() // take item from front of queue
{
int temp = queArray[front++];
if(front == SIZE)
front = 0;
return temp;
}
public boolean isEmpty() // true if queue is empty
{
return ( rear+1==front || (front+SIZE-1==rear) );
}
} // end class Queue
class Vertex
{
public char label; // label (e.g. 'A')
public boolean wasVisited;
public Vertex(char lab) // constructor
{
label = lab;
wasVisited = false;
}
} // end class Vertex
/*Graph类的bfs()方法和dfs()方法类似的,只是用队列代替了栈,嵌套的循环代替了单层 *循环。外层循环等待队列为空,而内层循环依次寻找当前顶点的未访问邻接点。
**/
class Graph
{
private final int MAX_VERTS = 20;
private Vertex vertexList[]; // list of vertices
private int adjMat[][]; // adjacency matrix
private int nVerts; // current number of vertices
private Queue theQueue;
public Graph() // constructor
{
vertexList = new Vertex[MAX_VERTS];
// adjacency matrix
adjMat = new int[MAX_VERTS][MAX_VERTS];
nVerts = 0;
for(int j=0; j<MAX_VERTS; j++) // set adjacency
for(int k=0; k<MAX_VERTS; k++) // matrix to 0
adjMat[j][k] = 0;
theQueue = new Queue();
} // end constructor
public void addVertex(char lab)
{
vertexList[nVerts++] = new Vertex(lab);
}
public void addEdge(int start, int end)
{
adjMat[start][end] = 1;
adjMat[end][start] = 1;
}
public void displayVertex(int v)
{
System.out.print(vertexList[v].label);
}
//核心代码
public void bfs() // breadth-first search
{ // begin at vertex 0
vertexList[0].wasVisited = true; // mark it
displayVertex(0); // display it
theQueue.insert(0); // insert at tail
int v2;
while( !theQueue.isEmpty() ) // until queue empty,
{
int v1 = theQueue.remove(); // remove vertex at head
// until it has no unvisited neighbors
while( (v2=getAdjUnvisitedVertex(v1)) != -1 )
{ // get one,
vertexList[v2].wasVisited = true; // mark it
displayVertex(v2); // display it
theQueue.insert(v2); // insert it
} // end while
} // end while(queue not empty)
// queue is empty, so we're done
for(int j=0; j<nVerts; j++) // reset flags
vertexList[j].wasVisited = false;
} // end bfs()
// returns an unvisited vertex adj to v
public int getAdjUnvisitedVertex(int v)
{
for(int j=0; j<nVerts; j++)
if(adjMat[v][j]==1 && vertexList[j].wasVisited==false)
return j;
return -1;
} // end getAdjUnvisitedVertex()
} // end class Graph
class BFSApp
{
public static void main(String[] args)
{
Graph theGraph = new Graph();
theGraph.addVertex('A'); // 0 (start for bfs)
theGraph.addVertex('B'); // 1
theGraph.addVertex('C'); // 2
theGraph.addVertex('D'); // 3
theGraph.addVertex('E'); // 4
theGraph.addEdge(0, 1); // AB
theGraph.addEdge(1, 2); // BC
theGraph.addEdge(0, 3); // AD
theGraph.addEdge(3, 4); // DE
System.out.print("Visits: ");
theGraph.bfs(); // breadth-first search
System.out.println();
} // end main()
} // end class BFSApp