- Flowable 高级扩展:自定义元素与性能优化实战
练习时长两年半的程序员小胡
Flowable流程引擎实战指南流程图flowableBPMN流程引擎java
在前五篇文章中,我们从基础概念、流程设计、API实战、SpringBoot集成,到外部系统协同,逐步构建了Flowable的应用体系。但企业级复杂场景中,原生功能往往难以满足定制化需求——比如需要特殊的审批规则网关、与决策引擎联动实现动态路由,或是在高并发场景下优化流程引擎性能。本文将聚焦Flowable的高级扩展能力,详解如何自定义流程元素、集成规则引擎,并掌握大型系统中的性能调优策略。一、自定
- Redis + Caffeine 实现高效的两级缓存架构
周童學
Java缓存redis架构
Redis+Caffeine实现高效的两级缓存架构引言在现代高并发系统中,缓存是提升系统性能的关键组件之一。传统的单一缓存方案往往难以同时满足高性能和高可用性的需求。本文将介绍如何结合Redis和Caffeine构建一个高效的两级缓存系统,并通过三个版本的演进展示如何逐步优化代码结构。项目源代码:github地址、gitee地址两级缓存架构概述两级缓存通常由本地缓存(如Caffeine)和分布式缓
- 【三桥君】MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
三桥君
《三桥君MCP落地方法论》《三桥君AI大模型落地方法论》#《三桥君AI产品方法论》人工智能AI产品经理MCPAPI三桥君系统架构llama
你好,我是✨三桥君✨本文介绍>>一、引言随着人工智能技术的快速发展,越来越多的企业开始引入大语言模型(LLM)以提升用户体验和运营效率。然而,如何高效、稳定地将这些AI能力落地到生产环境呢?传统的系统架构往往难以应对AI应用的高并发、低延迟和灵活扩展需求,因此,从整体架构角度设计AI应用架构显得尤为重要。本文三桥君将深入探讨以MCP为核心的AI应用架构,并分析多种部署方式的优劣势,为企业在AI落地
- 深入剖析 boost::unique_lock<boost::mutex>
程序员乐逍遥
C++Boost库C/C++多线程编程专题C++boost线程锁
在高并发的C++程序中,线程安全是永恒的主题。而boost::unique_lock作为Boost.Thread库中的核心组件,为开发者提供了强大、灵活且异常安全的互斥量管理机制。它不仅是RAII(ResourceAcquisitionIsInitialization)设计模式的典范,更是实现复杂线程同步逻辑的基石。一、从lock_guard的说起在介绍unique_lock之前,我们先回顾其“简
- 每日面试题15:如何解决堆溢出?
℡余晖^
每日面试题python开发语言
在Java应用运行过程中,"java.lang.OutOfMemoryError:Javaheapspace"是最常见的错误之一。无论是高并发的电商大促场景,还是持续运行的后台服务,堆内存溢出都可能导致服务不可用、数据丢失,甚至引发系统崩溃。本文将结合实际排查经验,系统讲解堆溢出的底层逻辑、应急处理流程及长效预防策略。一、堆溢出的本质:内存分配的"收支失衡"Java堆是JVM管理的内存区域,用于存
- 构建高性能Web应用:深入Spring WebFlux
李多田
本文还有配套的精品资源,点击获取简介:SpringWebFlux是Spring框架的一部分,支持反应式编程模型,适合高并发和低延迟Web应用。它提供了非阻塞I/O和事件驱动模型,优化了多核处理器资源的使用。SpringWebFlux拥有两种编程模式,核心组件包括WebHandler,RouterFunction,WebFilter,和WebSession。它与高性能服务器集成,并提供反应式HTTP
- 零基础学习性能测试第八章:高并发-redis缓存架构介绍
试着
性能测试缓存学习redis性能测试零基础
目录一、Redis在高并发中的核心价值二、Redis核心架构模式▶1.缓存穿透防御架构▶2.热点数据多级缓存三、Redis集群高可用方案▶1.RedisCluster分片架构▶2.读写分离方案四、Redis性能压测实战▶1.基准测试工具▶2.关键性能指标五、典型瓶颈分析与优化案例1:缓存雪崩案例2:热Key阻塞六、电商秒杀实战架构七、必须掌握的进阶技巧八、学习路径与工具推荐以下是为零基础学习者设计
- Spring Security OAuth2.0在分布式系统中的安全实践
引言分布式系统架构下,安全认证与授权面临跨服务、高并发、多租户等挑战。SpringSecurity与OAuth2.0的结合为微服务安全提供了标准化解决方案。分布式系统中的安全挑战跨服务身份认证的复杂性令牌管理的可扩展性问题多租户场景下的权限隔离需求防止CSRF、XSS等常见攻击SpringSecurityOAuth2.0核心架构授权服务器设计@EnableAuthorizationServer配置
- 【Spring WebFlux】为什么 Spring 要拥抱响应式
会飞的架狗师
SpringWebFluxspringjava后端
在现代分布式系统中,响应式系统已成为应对高并发、低延迟需求的核心方案。但构建响应式系统并非易事——它需要框架级别的支持来解决异步处理、资源调度、背压控制等底层问题。作为Java生态中最具影响力的框架,Spring对响应式的支持并非偶然,而是技术演进的必然选择。本文将从响应式系统的构建挑战出发,剖析Spring拥抱响应式的底层逻辑。一、响应式系统的构建困境:现有方案的局限性响应式系统的核心诉求是在有
- 使用Spring Boot构建响应式应用
微赚淘客系统@聚娃科技
springboot后端java
使用SpringBoot构建响应式应用大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨如何利用SpringBoot构建响应式应用,以适应现代应用程序对高并发和低延迟的需求。一、什么是响应式应用?响应式应用是一种通过异步编程模型来处理并发请求和数据流的应用程序设计方式。它能够更有效地利用计算资源,提供更快的响应时间和更高
- Mybatisplus的雪花算法及代码生成器的使用
你我约定有三
算法dreamweaver
1.雪花算法1.1背景:雪花算法(Snowflake)的使用背景主要源于高并发分布式系统环境下对唯一ID生成的需求。这种需求在像Twitter这样的社交媒体平台上尤为突出,因为Twitter需要处理每秒上万条消息的请求,并且每条消息都必须分配一个唯一的ID。这些ID不仅需要全局唯一,以跨机器、跨时间区分,还需要保持一定的顺序性(尽管不要求连续),以方便客户端排序和后续的数据处理。1.2与自动递增的
- 零基础学习性能测试第六章:性能难点-Jmeter实现海量用户压测
目录一、海量压测核心挑战与解决思路二、分布式压测集群搭建(百倍性能提升)1.架构设计2.实战步骤三、百万级用户参数化方案1.Redis预生成测试数据2.JMeter分段读取(避免内存溢出)3.CSV分片策略四、高并发优化配置模板1.`jmeter.properties`关键修改2.线程组配置技巧五、结果收集与监控方案1.轻量级结果存储2.实时监控看板六、海量压测实战案例:双11级流量模拟测试目标:
- 短剧系统开发上线全流程攻略:从架构设计到性能优化
v_qutudy
短剧系统开发海外短剧
——基于微服务架构与AI推荐技术的实战指南一、引言:短剧系统的市场背景与技术挑战行业现状全球短剧市场规模已突破百亿美元,中国用户日均观看时长从2021年的18分钟增长至2023年的58分钟,呈现出爆发式增长。短剧系统的核心特点包括:内容碎片化:单集时长1-10分钟,剧情紧凑。互动性强:支持点赞、评论、付费解锁等社交功能。变现模式多元:广告、付费观看、虚拟商品等。技术挑战短剧系统需解决高并发、低延迟
- H800核心技术突破与行业应用实战
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,H800芯片凭借自主架构优化与算力跃升,成为推动行业场景化落地的关键驱动力。本文将从技术路径、性能突破与行业应用三个维度,系统解析H800如何在高并发计算与低延时响应领域实现底层架构创新。首先聚焦其自主架构优化的核心技术路径,包括动态资源调度算法与异构计算单元的深度协同设计,揭示其在能效比与计算密度上的突破逻辑;进一步结合算力跃升的具体表现,探讨该芯片如何通
- Java高并发解决方案:线程池ThreadPoolExecutor详解
AI应用架构探索者
AI人工智能与大数据应用开发AI实战javapython开发语言ai
Java高并发解决方案:线程池ThreadPoolExecutor详解关键词:Java高并发、线程池、ThreadPoolExecutor、阻塞队列、拒绝策略、线程复用、任务调度摘要:在Java高并发场景中,线程池是解决线程频繁创建/销毁、资源浪费和线程管理混乱的“瑞士军刀”。本文将以“餐厅服务团队”为类比,用小学生都能听懂的语言,从线程池的核心参数、工作流程、实战配置到调优技巧,全面解析Thre
- 新一代数据库:融合多模智能,重塑数据价值
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- Python 4.0新特性解析:性能优化与语法升级
知识产权13937636601
计算机python性能优化开发语言
本文针对Python4.0的核心升级展开系统性分析,从性能优化与语法革新两个维度揭示其技术突破。首先解析新型解释器架构对运算效率的提升路径,其次探讨模式匹配、异步编程简化和类型系统强化等语法特性,最后结合机器学习与高并发场景验证新版本的实践价值。研究发现,Python4.0通过JIT编译器与内存管理重构实现3倍以上性能跃升,同时静态类型推导的完善显著提升大型项目维护效率,标志着Python从"胶水
- Kafka——两种集群搭建详解 k8s
Michaelwubo
kafka分布式
1、简介Kafka是一个能够支持高并发以及流式消息处理的消息中间件,并且Kafka天生就是支持集群的,今天就主要来介绍一下如何搭建Kafka集群。Kafka目前支持使用Zookeeper模式搭建集群以及KRaft模式(即无Zookeeper)模式这两种模式搭建集群,这两种模式各有各的好处,今天就来分别介绍一下这两种方式1.1、Kafka集群中的节点类型一个Kafka集群是由下列几种类型的节点构成的
- 探秘CommonJS:Node.js模块化核心解析
CommonJS是JavaScript的模块化规范,主要应用于服务器端环境(尤其是Node.js),其核心目标是解决代码组织、依赖管理和作用域隔离问题。以下是其核心要点:一、核心特性同步加载模块通过require()同步加载并执行,后续代码需等待模块加载完成后执行,适用于I/O快速的服务器环境(如本地文件读取)。作用域隔离每个文件视为独立模块,模块内定义的变量、函数默认私有(不污染全局作用域),仅
- Vue3中Axios的使用-附完整代码
【本人】
Vue前端框架vue.js
前言首先介绍一下什么是axiosAxios是一个基于promise网络请求库,作用于node.js和浏览器中。它是isomorphic的(即同一套代码可以运行在浏览器和node.js中)。在服务端它使用原生node.jshttp模块,而在客户端(浏览端)则使用XMLHttpRequests官方网站:Axios中文文档|Axios中文网目前官方最新版本1.8.4一、Axios优势1.简单易用Axio
- HAProxy 负载均衡指南
心上之秋
负载均衡运维
一、HAProxy简介HAProxy(HighAvailabilityProxy)是一款高性能、开源的负载均衡器和代理服务器。它以其高并发处理能力、灵活的配置选项和强大的功能而闻名,广泛应用于各种Web服务场景,如:负载均衡:将流量分配到多个后端服务器,提高系统可用性和性能。反向代理:隐藏真实服务器,提供安全防护、缓存内容等功能。SSL/TLS终止:处理HTTPS请求,提高网站安全性。Web性能优
- 第3章通用的服务可用性治理手段——3.6 降级策略
计小酱蟹不肉
读书笔记微服务降级系统设计场景题
在3.4节中,我们曾列举著名景区在节假日期间限制游客数量的例子来表述限流,而景区在节假日期间将不重要的、安全风险较大的或难以管理的游玩项目暂时关闭叫作“降级”,其目的是保障游客的游玩核心体验。与此类似,服务降级的目的是重点保障用户的核心体验和服务的可用性。在异常、高并发的情况下可以忽略非核心场景或换一种简单处理方式,以便释放资源给核心场景,保证核心场景的正常处理与高性能执行。服务降级的实施方案灵活
- 终面倒计时10分钟:候选人用`memory_profiler`定位Python内存泄漏
itAred
Python面试场景题PythonMemoryProfilingInterviewDebugging
场景设定:终面倒计时10分钟面试官:小兰,欢迎来到终面环节。在你前面的候选人已经展示了他们的项目经历和代码能力,但今天的终面,我们想考察你解决实际问题的能力。现在,假设你是一名资深后端工程师,负责维护一个高并发的在线服务。最近,生产环境的服务器内存占用持续升高,甚至出现了服务频繁挂掉的问题。我们需要你快速定位并解决这个问题。在接下来的10分钟内,我会给你一段简化的代码示例,并提供一个内存泄漏的场景
- Python爬虫实战:研究picloud相关技术
ylfhpy
爬虫项目实战python爬虫开发语言picloud
一、引言1.1研究背景与意义在数字化时代,网络数据已成为企业决策、学术研究和社会服务的重要资源。爬虫技术作为自动化获取网络信息的关键手段,在舆情监测、市场分析、学术研究等领域具有广泛应用。Python以其简洁的语法和丰富的爬虫库(如Requests、BeautifulSoup、Scrapy)成为爬虫开发的首选语言。然而,面对海量数据和高并发需求,本地爬虫系统往往面临性能瓶颈。picloud作为专业
- AI浪潮涌,数据库“融合智能”奏响产业新乐章
可涵不会debug
AI赋能人工智能数据库
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- 数据库融合进化:AI驱动下的数字化转型新纪元
颜颜yan_
前沿科技产品测评数据库人工智能
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- MySQL 监控与性能调优实战指南:从入门到精通
CarlowZJ
AI应用落地涉及的数据库mysql数据库监控与性能调优实战指南从入门到精通
目录一、MySQL监控的核心概念与体系架构(一)监控的重要性与目标(二)构建全面的监控指标体系(三)MySQL内置监控工具详解与实战(四)外部监控工具深度集成与应用二、性能调优策略:从基础到高级的全方位实战技术(一)配置参数优化:挖掘MySQL内置潜力(二)SQL优化:从源头解决性能瓶颈(三)架构调优:硬件资源的合理调配(四)自动化调优工具:迈向智能化运维三、实战案例:高并发电商秒杀场景下的监控与
- 融合与智能:AI时代数据库的演进新范式与产业格局重塑
意疏
测评人工智能数据库
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- 探讨 Node.js 中微服务架构的实践,包括服务注册与发现、负载均衡、API Gateway 和消息队列的应用。
各位观众老爷们,大家好!今天咱们来聊聊Node.js在微服务架构里头的那些事儿。别害怕,虽然听起来高大上,其实没那么玄乎,咱们争取用大白话把这玩意儿给整明白。开场白:为啥要搞微服务?想象一下,你开了一家小饭馆,一开始生意不错,就只有一个厨房,一个厨师(也就是你的单体应用)。后来生意火爆了,顾客越来越多,厨师一个人忙不过来了,炒菜慢,上菜慢,顾客抱怨声不断。怎么办?这时候,你灵机一动,把厨房拆分成几
- 深入分析 Node.js 的 V8 引擎如何在内部处理 JavaScript 代码,包括内存管理和垃圾回收机制。
海派程序猿
node.jsjavascript开发语言
各位观众老爷们,晚上好!今天咱们就来聊聊Node.js的大心脏——V8引擎,看看它到底是怎么把咱们写的JavaScript代码给“消化”掉的。别害怕,今天咱不搞那些生涩难懂的学院派理论,尽量用大白话,外加一些“栗子”,保证让你听得津津有味。V8引擎:JavaScript的超级翻译官首先,简单介绍一下V8。V8是Google开发的高性能JavaScript和WebAssembly引擎,用C++写的。
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_