poj 1191 棋盘分割

http://poj.org/problem?id=1191

DP 一不小心开了个五维数组

double ans[k][x1][y1][x2][y2]  表示(x1,y1)到(x2,y2)可以割k次时与平均数最小平方和

代码:

#include<iostream>

#include<cstdio>

#include<cstring>

#include<string>

#include<cmath>

#include<queue>

#include<algorithm>

#include<set>



using namespace std;



const int N=15;

const double M=100000000.0;

double ans[N][10][10][10][10];

double K;

int sum[10][10][10][10];

int a[10][10];

int n;

int dpsum(int x1,int y1,int x2,int y2)//求(x1,y1)到(x2,y2) 的和

{

    if(sum[x1][y1][x2][y2]!=-1)

    return sum[x1][y1][x2][y2];

    if(x1==x2&&y1==y2)

    {

        sum[x1][y1][x2][y2]=a[x1][y1];

    }else

    if(x1<x2)

    {

        sum[x1][y1][x2][y2]=dpsum(x1,y1,x1,y2)+dpsum(x1+1,y1,x2,y2);

    }else

    if(y1<y2)

    {

        sum[x1][y1][x2][y2]=dpsum(x1,y1,x2,y1)+dpsum(x1,y1+1,x2,y2);

    }

    return sum[x1][y1][x2][y2];

}

 double FFmin(double x,double y)

{

    return (x<y)?x:y;

}

double dpans(int k,int x1,int y1,int x2,int y2)

{

    if(ans[k][x1][y1][x2][y2]>=0.0)

    {

        return ans[k][x1][y1][x2][y2];

    }

    if(k==0)

    {

        ans[k][x1][y1][x2][y2]=((sum[x1][y1][x2][y2]-K)*(sum[x1][y1][x2][y2]-K));

        return ans[k][x1][y1][x2][y2];

    }

    ans[k][x1][y1][x2][y2]=M;

    for(int x=x1;x<x2;++x)

    {

       ans[k][x1][y1][x2][y2]=FFmin(ans[k][x1][y1][x2][y2],

                                  (dpans(k-1,x1,y1,x,y2))+(sum[x+1][y1][x2][y2]-K)*(sum[x+1][y1][x2][y2]-K));

       ans[k][x1][y1][x2][y2]=FFmin(ans[k][x1][y1][x2][y2],

                                  (dpans(k-1,x+1,y1,x2,y2))+(sum[x1][y1][x][y2]-K)*(sum[x1][y1][x][y2]-K));

    }

    for(int y=y1;y<y2;++y)

    {

       ans[k][x1][y1][x2][y2]=FFmin(ans[k][x1][y1][x2][y2],

                                  (dpans(k-1,x1,y1,x2,y))+(sum[x1][y+1][x2][y2]-K)*(sum[x1][y+1][x2][y2]-K));

       ans[k][x1][y1][x2][y2]=FFmin(ans[k][x1][y1][x2][y2],

                                  (dpans(k-1,x1,y+1,x2,y2))+(sum[x1][y1][x2][y]-K)*(sum[x1][y1][x2][y]-K));

    }

    return ans[k][x1][y1][x2][y2];

}

void begin(int n)

{

    for(int i=0;i<n;++i)

    for(int l1=1;l1<=8;++l1)

    for(int l2=1;l2<=8;++l2)

    for(int l3=1;l3<=8;++l3)

    for(int l4=1;l4<=8;++l4)

    {

        ans[i][l1][l2][l3][l4]=-1.0;

    }

    for(int l1=1;l1<=8;++l1)

    for(int l2=1;l2<=8;++l2)

    for(int l3=1;l3<=8;++l3)

    for(int l4=1;l4<=8;++l4)

    {

       dpsum(l1,l2,l3,l4);

    }

}

int main()

{

   while(scanf("%d",&n)!=EOF)

   {

       for(int i=1;i<=8;++i)

       {

           for(int j=1;j<=8;++j)

           {

               scanf("%d",&a[i][j]);

           }

       }

       memset(sum,-1,sizeof(sum));

       begin(n);

       K=1.0*sum[1][1][8][8]/n;

       printf("%.3f\n",sqrt(1.0*dpans(n-1,1,1,8,8)/n));

   }

   return 0;

}

  

 

 

你可能感兴趣的:(poj)