Go从入门到精通(13)-方法(method)

Go从入门到精通(13)

方法(method)


文章目录

  • Go从入门到精通(13)
  • 方法(method)
    • 方法是什么
    • 函数和方法的区别
    • 指针或值作为接收者
    • 内嵌类型的方法和继承
    • 如何在类型中嵌入功能
    • 多重继承
    • 通用方法和方法命名
    • 和其他面向对象语言比较 Go 的类型和方法
    • 垃圾回收和 SetFinalizer


方法(method)

方法是什么

在 Go 语言中,结构体就像是类的一种简化形式,那么面向对象程序员可能会问:类的方法在哪里呢?在 Go 中有一个概念,它和方法有着同样的名字,并且大体上意思相同:Go 方法是作用在接收者(receiver)上的一个函数,接收者是某种类型的变量。因此方法是一种特殊类型的函数。

接收者类型可以是(几乎)任何类型,不仅仅是结构体类型:任何类型都可以有方法,甚至可以是函数类型,可以是 int、bool、string 或数组的别名类型。但是接收者不能是一个接口类型(interface{}),因为接口是一个抽象定义,但是方法却是具体实现;如果这样做会引发一个编译错误:invalid receiver type…。

最后接收者不能是一个指针类型,但是它可以是任何其他允许类型的指针。

一个类型加上它的方法等价于面向对象中的一个类。一个重要的区别是:在 Go 中,类型的代码和绑定在它上面的方法的代码可以不放置在一起,它们可以存在在不同的源文件,唯一的要求是:它们必须是同一个包的。

类型 T(或 *T)上的所有方法的集合叫做类型 T(或 *T)的方法集(method set)。

因为方法是函数,所以同样的,不允许方法重载,即对于一个类型只能有一个给定名称的方法。但是如果基于接收者类型,是有重载的:具有同样名字的方法可以在 2 个或多个不同的接收者类型上存在,比如在同一个包里这么做是允许的:

func (a *denseMatrix) Add(b Matrix) Matrix
func (a *sparseMatrix) Add(b Matrix) Matrix

定义方法的一般格式如下:

func (recv receiver_type) methodName(parameter_list) (return_value_list) { ... }

如果 recv 是 receiver 的实例,Method1 是它的方法名,那么方法调用遵循传统的 object.name 选择器符号:recv.Method1()。

如果 recv 是一个指针,Go 会自动解引用。

如果方法不需要使用 recv 的值,可以用 _ 替换它,比如:

func (_ receiver_type) methodName(parameter_list) (return_value_list) { ... }

recv 就像是面向对象语言中的 this 或 self,但是 Go 中并没有这两个关键字。随个人喜好,你可以使用 this 或 self 作为 receiver 的名字。下面是一个结构体上的简单方法的例子:

package main

import "fmt"

type TwoInts struct {
	a int
	b int
}

func main() {
	two1 := new(TwoInts)
	two1.a = 12
	two1.b = 10

	fmt.Printf("The sum is: %d\n", two1.AddThem())
	fmt.Printf("Add them to the param: %d\n", two1.AddToParam(20))

	two2 := TwoInts{3, 4}
	fmt.Printf("The sum is: %d\n", two2.AddThem())
}

func (tn *TwoInts) AddThem() int {
	return tn.a + tn.b
}

func (tn *TwoInts) AddToParam(param int) int {
	return tn.a + tn.b + param
}
//输出
The sum is: 22
Add them to the param: 42
The sum is: 7

下面是非结构体类型上方法的例子:

package main

import "fmt"

type IntVector []int

func (v IntVector) Sum() (s int) {
	for _, x := range v {
		s += x
	}
	return
}

func main() {
	fmt.Println(IntVector{1, 2, 3}.Sum()) // 输出是6
}

函数和方法的区别

  • 函数将变量作为参数:Function1(recv)
  • 方法在变量上被调用:recv.Method1()

在接收者是指针时,方法可以改变接收者的值(或状态),这点函数也可以做到(当参数作为指针传递,即通过引用调用时,函数也可以改变参数的状态)。

不要忘记 Method1 后边的括号 (),否则会引发编译器错误:method recv.Method1 is not an
expression, must be called

接收者必须有一个显式的名字,这个名字必须在方法中被使用。

receiver_type 叫做 (接收者)基本类型,这个类型必须在和方法同样的包中被声明。

在 Go 中,(接收者)类型关联的方法不写在类型结构里面,就像类那样;耦合更加宽松;类型和方法之间的关联由接收者来建立。

方法没有和数据定义(结构体)混在一起:它们是正交的类型;表示(数据)和行为(方法)是独立的。

指针或值作为接收者

鉴于性能的原因,recv 最常见的是一个指向 receiver_type 的指针(因为我们不想要一个实例的拷贝,如果按值调用的话就会是这样),特别是在 receiver 类型是结构体时,就更是如此了。

如果想要方法改变接收者的数据,就在接收者的指针类型上定义该方法。否则,就在普通的值类型上定义方法。

package main

import (
	"fmt"
)

type B struct {
	thing int
}

func (b *B) change() { b.thing = 1 }

func (b B) write() string { return fmt.Sprint(b) }

func main() {
	var b1 B // b1是值
	b1.change()
	fmt.Println(b1.write())

	b2 := new(B) // b2是指针
	b2.change()
	fmt.Println(b2.write())
}

/* 输出:
{1}
{1}
*/

指针方法和值方法都可以在指针或非指针上被调用,go会自动转换,如下面程序所示,类型 List 在值上有一个方法 Len(),在指针上有一个方法 Append(),但是可以看到两个方法都可以在两种类型的变量上被调用。

package main

import (
	"fmt"
)

type List []int

func (l List) Len() int        { return len(l) }
func (l *List) Append(val int) { *l = append(*l, val) }

func main() {
	// 值
	var lst List
	lst.Append(1)
	fmt.Printf("%v (len: %d)", lst, lst.Len()) // [1] (len: 1)

	// 指针
	plst := new(List)
	plst.Append(2)
	fmt.Printf("%v (len: %d)", plst, plst.Len()) // &[2] (len: 1)
}

内嵌类型的方法和继承

当一个匿名类型被内嵌在结构体中时,匿名类型的可见方法也同样被内嵌,这在效果上等同于外层类型 继承 了这些方法:将父类型放在子类型中来实现亚型。这个机制提供了一种简单的方式来模拟经典面向对象语言中的子类和继承相关的效果,也类似 Ruby 中的混入(mixin)。

假定有一个 Engine 接口类型,一个 Car 结构体类型,它包含一个 Engine 类型的匿名字段:

type Engine interface {
	Start()
	Stop()
}

type Car struct {
	Engine
}

//我们可以构建如下的代码:
func (c *Car) GoToWorkIn() {
	// get in car
	c.Start()
	// drive to work
	c.Stop()
	// get out of car
}

如何在类型中嵌入功能

主要有两种方法来实现在类型中嵌入功能:

A:聚合(或组合):包含一个所需功能类型的具名字段。

B:内嵌:内嵌(匿名地)所需功能类型,像前面所演示的那样。

为了使这些概念具体化,假设有一个 Customer 类型,我们想让它通过 Log 类型来包含日志功能,Log 类型只是简单地包含一个累积的消息(当然它可以是复杂的)。如果想让特定类型都具备日志功能,你可以实现一个这样的 Log 类型,然后将它作为特定类型的一个字段,并提供 Log(),它返回这个日志的引用。

方式A:

package main

import (
	"fmt"
)

type Log struct {
	msg string
}

type Customer struct {
	Name string
	log  *Log
}

func main() {
	c := new(Customer)
	c.Name = "Barak Obama"
	c.log = new(Log)
	c.log.msg = "1 - Yes we can!"
	// shorter
	c = &Customer{"Barak Obama", &Log{"1 - Yes we can!"}}
	// fmt.Println(c) &{Barak Obama 1 - Yes we can!}
	c.Log().Add("2 - After me the world will be a better place!")
	//fmt.Println(c.log)
	fmt.Println(c.Log())

}

func (l *Log) Add(s string) {
	l.msg += "\n" + s
}

func (l *Log) String() string {
	return l.msg
}

func (c *Customer) Log() *Log {
	return c.log
}
// 输出
1 - Yes we can!
2 - After me the world will be a better place!

方式B:

package main

import (
	"fmt"
)

type Log struct {
	msg string
}

type Customer struct {
	Name string
	Log
}

func main() {
	c := &Customer{"Barak Obama", Log{"1 - Yes we can!"}}
	c.Add("2 - After me the world will be a better place!")
	fmt.Println(c)

}

func (l *Log) Add(s string) {
	l.msg += "\n" + s
}

func (l *Log) String() string {
	return l.msg
}

func (c *Customer) String() string {
	return c.Name + "\nLog:" + fmt.Sprintln(c.Log.String())
}

如果内嵌类型嵌入了其他类型,也是可以的,那些类型的方法可以直接在外层类型中使用。

因此一个好的策略是创建一些小的、可复用的类型作为一个工具箱,用于组成域类型。

多重继承

多重继承指的是类型获得多个父类型行为的能力,它在传统的面向对象语言中通常是不被实现的(C++ 和 Python 例外)。因为在类继承层次中,多重继承会给编译器引入额外的复杂度。但是在 Go 语言中,通过在类型中嵌入所有必要的父类型,可以很简单的实现多重继承。

作为一个例子,假设有一个类型 CameraPhone,通过它可以 Call(),也可以 TakeAPicture(),但是第一个方法属于类型 Phone,第二个方法属于类型 Camera。

只要嵌入这两个类型就可以解决这个问题,如下所示:

package main

import (
	"fmt"
)

type Camera struct{}

func (c *Camera) TakeAPicture() string {
	return "Click"
}

type Phone struct{}

func (p *Phone) Call() string {
	return "Ring Ring"
}

type CameraPhone struct {
	Camera
	Phone
}

func main() {
	cp := new(CameraPhone)
	fmt.Println("Our new CameraPhone exhibits multiple behaviors...")
	fmt.Println("It exhibits behavior of a Camera: ", cp.TakeAPicture())
	fmt.Println("It works like a Phone too: ", cp.Call())
}

通用方法和方法命名

与标准库风格保持一致

Go 标准库的命名风格是最佳参考:

  • 文件操作:Open()、Close()、Read()、Write()
  • 网络编程:Listen()、Accept()、Connect()
  • 集合操作:Len()、Cap()、Append()、Delete()
  • 错误处理:Error()、Is()、As()

通过遵循这些原则,Go 代码将更加一致、易读,符合社区的最佳实践。

和其他面向对象语言比较 Go 的类型和方法

在如 C++、Java、C# 和 Ruby 这样的面向对象语言中,方法在类的上下文中被定义和继承:在一个对象上调用方法时,运行时会检测类以及它的超类中是否有此方法的定义,如果没有会导致异常发生。

在 Go 语言中,这样的继承层次是完全没必要的:如果方法在此类型定义了,就可以调用它,和其他类型上是否存在这个方法没有关系。在这个意义上,Go 具有更大的灵活性。

Go 不需要一个显式的类定义,如同 Java、C++、C# 等那样,相反地,“类”是通过提供一组作用于一个共同类型的方法集来隐式定义的。类型可以是结构体或者任何用户自定义类型。

垃圾回收和 SetFinalizer

Go 开发者不需要写代码来释放程序中不再使用的变量和结构占用的内存,在 Go 运行时中有一个独立的进程,即垃圾收集器(GC),会处理这些事情,它搜索不再使用的变量然后释放它们的内存。可以通过 runtime 包访问 GC 进程。

通过调用 runtime.GC() 函数可以显式的触发 GC,但这只在某些罕见的场景下才有用,比如当内存资源不足时调用 runtime.GC(),它会在此函数执行的点上立即释放一大片内存,此时程序可能会有短时的性能下降(因为 GC 进程在执行)。

如果想知道当前的内存状态,可以使用:

var m runtime.MemStats
runtime.ReadMemStats(&m)
fmt.Printf("%d Kb\n", m.Alloc / 1024)

如果需要在一个对象 obj 被从内存移除前执行一些特殊操作,比如写到日志文件中,可以通过如下方式调用函数来实现:

runtime.SetFinalizer(obj, func(obj *typeObj))

func(obj *typeObj) 需要一个 typeObj 类型的指针参数 obj,特殊操作会在它上面执行。func 也可以是一个匿名函数。

在对象被 GC 进程选中并从内存中移除以前,SetFinalizer 都不会执行,即使程序正常结束或者发生错误。

你可能感兴趣的:(go从入门到精通,golang,开发语言,后端)