LeetCode Hot 100 缺失的第一个正数

给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。

请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。

示例 1:

输入:nums = [1,2,0]
输出:3
解释:范围 [1,2] 中的数字都在数组中。

示例 2:

输入:nums = [3,4,-1,1]
输出:2
解释:1 在数组中,但 2 没有。

示例 3:

输入:nums = [7,8,9,11,12]
输出:1
解释:最小的正数 1 没有出现。

提示:

  • 1 <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1

方法:置换
除了打标记以外,我们还可以使用置换的方法,将给定的数组「恢复」成下面的形式:

如果数组中包含 x∈[1,N],那么恢复后,数组的第 x−1 个元素为 x。

在恢复后,数组应当有 [1, 2, ..., N] 的形式,但其中有若干个位置上的数是错误的,每一个错误的位置就代表了一个缺失的正数。以题目中的示例二 [3, 4, -1, 1] 为例,恢复后的数组应当为 [1, -1, 3, 4],我们就可以知道缺失的数为 2。

那么我们如何将数组进行恢复呢?我们可以对数组进行一次遍历,对于遍历到的数 x=nums[i],如果 x∈[1,N],我们就知道 x 应当出现在数组中的 x−1 的位置,因此交换 nums[i] 和 nums[x−1],这样 x 就出现在了正确的位置。在完成交换后,新的 nums[i] 可能还在 [1,N] 的范围内,我们需要继续进行交换操作,直到 x∈
/
[1,N]。

注意到上面的方法可能会陷入死循环。如果 nums[i] 恰好与 nums[x−1] 相等,那么就会无限交换下去。此时我们有 nums[i]=x=nums[x−1],说明 x 已经出现在了正确的位置。因此我们可以跳出循环,开始遍历下一个数。

由于每次的交换操作都会使得某一个数交换到正确的位置,因此交换的次数最多为 N,整个方法的时间复杂度为 O(N)。

class Solution {
public:
    int firstMissingPositive(vector& nums) {
        int n = nums.size();
        for(int i = 0;i < n;++i)
        {
            while(nums[i] < n && nums[i] > 0 && nums[nums[i] - 1] != nums[i])
            {
               swap(nums[nums[i] - 1],nums[i]);
            }
        }
        for(int i = 0;i < n;i ++)
        {
            if(nums[i] != i + 1)
            {
                return i + 1;
            }

        }
        return n + 1;
    }
};

你可能感兴趣的:(leetcode,算法,数据结构)