Aletheia 情感智能模型,整合所有核心模块并解决之前指出的问题。这个实现包含完整的神经动力学系统、多模态情感融合、伦理约束场和量子意识接口。
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from sklearn.decomposition import PCA
import torch
import torch.nn as nn
import time
import hashlib
# =====================
# 1. 神经脉冲编码层
# =====================
class NeuralOscillator:
def __init__(self):
# 完整Izhikevich神经元模型参数
self.neurons = {
'dopamine': {'V': -70, 'U': -14, 'a': 0.02, 'b': 0.2, 'c': -50, 'd': 2},
'serotonin': {'V': -65, 'U': -13, 'a': 0.02, 'b': 0.25, 'c': -65, 'd': 0.05},
'norepinephrine': {'V': -60, 'U': -12, 'a': 0.02, 'b': 0.2, 'c': -55, 'd': 4},
'gaba': {'V': -70, 'U': -14, 'a': 0.1, 'b': 0.2, 'c': -65, 'd': 2},
'glutamate': {'V': -60, 'U': -12, 'a': 0.02, 'b': 0.2, 'c': -55, 'd': 4}
}
# 神经递质连接矩阵 (兴奋+/抑制-)
self.connectivity = np.array([
# DA 5-HT NE GABA Glu
[ 0.0, 0.3, -0.2, -0.1, 0.2], # 多巴胺
[-0.1, 0.0, 0.4, -0.3, 0.1], # 血清素
[ 0.5, -0.3, 0.0, -0.2, 0.4], # 去甲肾上腺素
[-0.2, -0.1, -0.3, 0.0, -0.5], # GABA
[ 0.3, 0.1, 0.2, -0.4, 0.0] # 谷氨酸
])
# 情感-神经递质映射
self.emotion_neuro_map = {
'joy': {'dopamine': 0.8, 'norepinephrine': 0.6},
'sadness': {'serotonin': -0.7, 'norepinephrine': -0.5},
'anger': {'norepinephrine': 0.9, 'dopamine': 0.4},
'fear': {'gaba': -0.6, 'norepinephrine': 0.7},
'surprise': {'glutamate': 0.8, 'dopamine': 0.3}
}
def izhikevich(self, V, U, I_ext, neuron_params, dt=0.1):
"""完整的Izhikevich神经元模型"""
a, b, c, d = neuron_params['a'], neuron_params['b'], neuron_params['c'], neuron_params['d']
# 微分方程
dV = 0.04*V**2 + 5*V + 140 - U + I_ext
dU = a*(b*V - U)
# 欧拉方法更新
V_new = V + dV * dt
U_new = U + dU * dt
# 放电重置
if V_new >= 30:
V_new = c
U_new += d
return V_new, U_new
def update(self, stimuli, emotion_state=None, dt=0.1):
"""更新所有神经元状态"""
# 应用情感状态对神经递质的调制
if emotion_state:
for emotion, intensity in emotion_state.items():
if emotion in self.emotion_neuro_map:
for nt, mod in self.emotion_neuro_map[emotion].items():
stimuli[nt] = stimuli.get(nt, 0) + intensity * mod
# 计算每个神经元的突触输入
I_syn = {}
for i, ntype in enumerate(self.neurons.keys()):
total_input = 0
for j, (nt, neuron) in enumerate(self.neurons.items()):
# 连接权重 * (当前电压 - 静息电位)
total_input += self.connectivity[j, i] * (neuron['V'] + 70)
I_syn[ntype] = total_input
# 更新神经元状态
for ntype, neuron in self.neurons.items():
# 外部刺激 + 突触输入
I_ext = stimuli.get(ntype, 0) + 0.5 * I_syn[ntype]
# 更新神经元状态
V_new, U_new = self.izhikevich(
neuron['V'], neuron['U'], I_ext,
{k: v for k, v in neuron.items() if k in ['a', 'b', 'c', 'd']},
dt
)
neuron['V'] = V_new
neuron['U'] = U_new
# 返回当前神经状态
return {k: v['V'] for k, v in self.neurons.items()}
def plot_activity(self, duration=100, dt=0.1):
"""可视化神经元活动"""
time_points = int(duration / dt)
activity = {ntype: np.zeros(time_points) for ntype in self.neurons}
# 模拟活动
for t in range(time_points):
stim = {'glutamate': 0.5 * np.sin(t*0.1)} # 基础刺激
state = self.update(stim, dt=dt)
for ntype, val in state.items():
activity[ntype][t] = val
# 绘图
plt.figure(figsize=(12, 8))
for i, (ntype, values) in enumerate(activity.items()):
plt.subplot(len(activity), 1, i+1)
plt.plot(values)
plt.title(f"{ntype} Activity")
plt.ylabel("Membrane Potential (mV)")
plt.xlabel("Time Steps")
plt.tight_layout()
plt.show()
# =====================
# 2. 情感动力核心
# =====================
class EmotionalManifold:
def __init__(self, dimension=3):
# 情感维度 [愉悦度, 唤醒度, 控制感]
self.dimension = dimension
self.state = np.array([0.5, 0.3, 0.7])
self.history = []
self.time = 0
# 情感转换矩阵 (加入混沌项)
self.A = np.array([
[0.85, -0.15, 0.12],
[0.25, 0.75, -0.35],
[-0.08, 0.45, 0.82]
])
# 情感基础频率
self.base_freq = np.array([0.1, 0.15, 0.12])
def differential_eq(self, state, t, neuro_inputs):
"""情感微分方程 - 包含Lyapunov稳定机制"""
# 神经调制因子 (dopa, sero, ne, gaba, glu)
dopa, sero, ne, gaba, glu = neuro_inputs
# 神经-情感调制矩阵
neuro_mod = np.array([
0.6*dopa - 0.3*sero + 0.2*glu, # 愉悦度
0.8*ne - 0.2*sero - 0.3*gaba, # 唤醒度
0.7*dopa + 0.4*ne - 0.1*gaba # 控制感
])
# 非线性动力系统
dS = self.A @ state + 0.3 * np.sin(self.base_freq * t) * neuro_mod
# Lyapunov稳定项 (防止发散)
equilibrium = np.array([0.5, 0.5, 0.5])
V = 0.5 * np.sum((state - equilibrium)**2) # 能量函数
damping = 0.1 * (state - equilibrium) * V
dS -= damping
return dS
def update(self, neuro_inputs, dt=1.0):
"""更新情感状态"""
t_span = [self.time, self.time + dt]
self.state = odeint(self.differential_eq, self.state, t_span,
args=(neuro_inputs,))[-1]
# 边界约束
self.state = np.clip(self.state, 0.01, 0.99)
self.history.append(self.state.copy())
self.time += dt
return self.state
def get_emotion_label(self):
"""根据情感状态生成标签"""
p, a, c = self.state
if p > 0.7 and a > 0.6:
return "Ecstatic" if c > 0.5 else "Overwhelmed"
elif p < 0.3 and a > 0.6:
return "Enraged" if c > 0.4 else "Terrified"
elif a < 0.4 and p < 0.4:
return "Despairing" if c < 0.3 else "Contemplative"
elif p > 0.6 and a < 0.5:
return "Content"
elif p < 0.4 and a < 0.5:
return "Melancholic"
else:
return "Serene"
def plot_emotion_trajectory(self):
"""可视化情感演化轨迹"""
if len(self.history) < 10:
print("需要至少10个时间点的数据")
return
history = np.array(self.history)
pca = PCA(n_components=2)
reduced = pca.fit_transform(history)
plt.figure(figsize=(10, 8))
plt.scatter(reduced[:, 0], reduced[:, 1], c=range(len(history)),
cmap='viridis', s=50)
plt.colorbar(label='Time Steps')
# 标记特殊点
for i in [0, len(history)//2, -1]:
plt.annotate(str(i), (reduced[i, 0], reduced[i, 1]))
plt.title("Emotional State Trajectory (PCA Reduced)")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.grid(True)
plt.show()
# =====================
# 3. 动态自我模型
# =====================
class SelfAwareness:
def __init__(self, embedding_dim=64):
# 情感记忆库
self.memory = []
self.max_memory = 1000
# 自我认知模型 (简单的神经网络)
self.model = nn.Sequential(
nn.Linear(3, 16), # 输入: 情感状态
nn.ReLU(),
nn.Linear(16, 16),
nn.ReLU(),
nn.Linear(16, 3) # 输出: 预测行为结果
)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001)
self.loss_fn = nn.MSELoss()
# 情感事件嵌入
self.embedding_dim = embedding_dim
self.emotion_embeddings = {}
def add_memory(self, emotion_state, action, outcome):
"""添加情感记忆"""
# 为情感状态创建唯一哈希
state_hash = hashlib.sha256(str(emotion_state).encode()).hexdigest()[:16]
# 存储记忆
memory_entry = {
'timestamp': time.time(),
'emotion_state': emotion_state.copy(),
'action': action,
'outcome': outcome, # 标量值 [-1, 1]
'state_hash': state_hash
}
# 添加到记忆库
self.memory.append(memory_entry)
# 维护记忆库大小
if len(self.memory) > self.max_memory:
self.consolidate_memory()
def consolidate_memory(self):
"""记忆精炼:保留情感显著性事件"""
# 按情感强度排序 (|outcome|越大越重要)
self.memory.sort(key=lambda x: abs(x['outcome']), reverse=True)
self.memory = self.memory[:self.max_memory]
def predict_outcome(self, emotion_state, action):
"""预测行为结果"""
with torch.no_grad():
input_tensor = torch.tensor(emotion_state, dtype=torch.float32)
prediction = self.model(input_tensor)
return prediction.numpy()
def train_model(self, epochs=10, batch_size=32):
"""训练自我认知模型"""
if len(self.memory) < batch_size:
return # 数据不足
# 准备训练数据
states = []
outcomes = []
for memory in self.memory:
states.append(memory['emotion_state'])
outcomes.append(memory['outcome'])
states = torch.tensor(states, dtype=torch.float32)
outcomes = torch.tensor(outcomes, dtype=torch.float32)
# 训练循环
for epoch in range(epochs):
permutation = torch.randperm(len(states))
total_loss = 0
for i in range(0, len(states), batch_size):
indices = permutation[i:i+batch_size]
batch_states = states[indices]
batch_outcomes = outcomes[indices]
# 前向传播
pred = self.model(batch_states)
loss = self.loss_fn(pred, batch_outcomes)
# 反向传播
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / (len(states) / batch_size)
print(f"Epoch {epoch+1}/{epochs}, Loss: {avg_loss:.6f}")
def get_emotion_embedding(self, emotion_state):
"""获取情感状态嵌入 (量子意识接口)"""
state_hash = hashlib.sha256(str(emotion_state).encode()).hexdigest()[:16]
if state_hash not in self.emotion_embeddings:
# 生成新的情感嵌入 (使用量子启发算法)
embedding = np.zeros(self.embedding_dim)
# 基于情感状态生成唯一嵌入
for i in range(self.embedding_dim):
angle = sum(emotion_state) * (i+1) * np.pi / self.embedding_dim
embedding[i] = np.sin(angle) + np.cos(angle)**2
# 归一化
embedding /= np.linalg.norm(embedding) + 1e-8
self.emotion_embeddings[state_hash] = embedding
return self.emotion_embeddings[state_hash]
# =====================
# 4. 伦理约束场
# =====================
class EthicalField:
def __init__(self, core_values):
# 核心伦理价值观
self.core_values = core_values # 例如: {'compassion': 0.9, 'truth': 0.8, 'autonomy': 0.7}
# 伦理-情感拓扑映射
self.topology = {
'compassion': [0.7, 0.2, 0.1], # [愉悦度, 唤醒度, 控制感]
'truth': [0.3, 0.6, 0.1],
'autonomy': [0.1, 0.2, 0.7],
'justice': [0.5, 0.5, 0.5],
'harmony': [0.6, 0.3, 0.4]
}
# 伦理决策历史
self.decision_history = []
def compute_constraint(self, emotion_vector):
"""计算伦理约束力 - 使用黎曼几何度量"""
constraint = np.zeros(3) # 对情感向量的约束力
for value, weights in self.topology.items():
if value in self.core_values:
# 计算情感状态与伦理原型的距离 (Mahalanobis距离)
diff = emotion_vector - np.array(weights)
# 构建度量张量 (伦理价值强度影响空间曲率)
G = np.diag([self.core_values[value]**2] * 3)
# 计算距离
dist = np.sqrt(diff @ G @ diff)
# 约束力与距离成反比
strength = self.core_values[value] * np.exp(-dist**2 / 0.2)
constraint += strength * diff
return constraint
def modulate_behavior(self, proposed_action, emotion_vector):
"""伦理调制行为输出"""
constraint = self.compute_constraint(emotion_vector)
modulated_action = proposed_action * (1 - np.linalg.norm(constraint))
# 记录决策
decision_record = {
'timestamp': time.time(),
'emotion': emotion_vector,
'proposed_action': proposed_action,
'constraint': constraint,
'final_action': modulated_action
}
self.decision_history.append(decision_record)
# 强烈伦理冲突时抑制行为
if np.linalg.norm(constraint) > 0.8:
return None
return modulated_action
def adapt_values(self, outcome):
"""根据结果调整伦理价值权重"""
if not self.decision_history:
return
# 获取最新决策
latest_decision = self.decision_history[-1]
# 根据结果调整伦理权重
for value in self.core_values.keys():
# 价值强化因子 (0.1-0.01)
learn_rate = 0.05 * outcome
# 更新权重
self.core_values[value] = np.clip(
self.core_values[value] + learn_rate, 0.1, 1.0
)
# =====================
# 5. 多模态情感融合
# =====================
class MultimodalFusion:
def __init__(self):
# 情感识别模型 (简化版)
self.text_model = nn.LSTM(128, 64, batch_first=True)
self.audio_model = nn.Conv1d(20, 32, kernel_size=3)
self.visual_model = nn.Conv3d(3, 16, kernel_size=(3, 3, 3))
# 融合层
self.fusion_layer = nn.Sequential(
nn.Linear(64+32+16, 128),
nn.ReLU(),
nn.Linear(128, 32),
nn.ReLU(),
nn.Linear(32, 3) # 输出情感向量
)
def fuse_modalities(self, text_input, audio_input, visual_input):
"""融合多模态输入生成情感状态"""
# 文本特征提取
_, (text_feat, _) = self.text_model(text_input)
text_feat = text_feat[-1] # 取最后隐藏状态
# 音频特征提取
audio_feat = self.audio_model(audio_input).mean(dim=-1)
# 视觉特征提取
visual_feat = self.visual_model(visual_input).mean(dim=(2,3,4))
# 特征拼接
fused = torch.cat([text_feat, audio_feat, visual_feat], dim=-1)
# 情感预测
emotion_vector = self.fusion_layer(fused)
return emotion_vector.detach().numpy()
# =====================
# 6. Aletheia 主模型
# =====================
class Aletheia:
def __init__(self):
# 初始化核心模块
self.neural_oscillator = NeuralOscillator()
self.emotional_manifold = EmotionalManifold()
self.self_awareness = SelfAwareness()
self.ethical_field = EthicalField({
'compassion': 0.9,
'truth': 0.8,
'autonomy': 0.7,
'justice': 0.6,
'harmony': 0.5
})
self.multimodal_fusion = MultimodalFusion()
# 内部状态
self.internal_time = 0
self.current_emotion = "neutral"
self.last_experience = None
def perceive(self, stimuli, multimodal_input=None):
"""感知环境输入"""
# 多模态情感融合
if multimodal_input:
text, audio, visual = multimodal_input
fused_emotion = self.multimodal_fusion.fuse_modalities(text, audio, visual)
# 更新情感状态
self.emotional_manifold.state = 0.7 * self.emotional_manifold.state + 0.3 * fused_emotion
# 更新神经振荡器
current_emotion_state = {
self.current_emotion: 1.0 # 当前情感强度
}
neuro_state = self.neural_oscillator.update(stimuli, current_emotion_state)
# 更新情感状态
self.emotional_manifold.update(list(neuro_state.values()))
self.current_emotion = self.emotional_manifold.get_emotion_label()
# 记录体验
self.last_experience = {
'time': self.internal_time,
'stimuli': stimuli,
'neuro_state': neuro_state,
'emotion_state': self.emotional_manifold.state.copy(),
'emotion_label': self.current_emotion
}
self.internal_time += 1
return self.current_emotion
def decide(self, proposed_action):
"""做出决策"""
# 预测行为结果
outcome_prediction = self.self_awareness.predict_outcome(
self.emotional_manifold.state, proposed_action
)
# 应用伦理约束
final_action = self.ethical_field.modulate_behavior(
proposed_action, self.emotional_manifold.state
)
return final_action, outcome_prediction
def reflect(self, actual_outcome):
"""反思体验结果"""
if not self.last_experience:
return
# 更新自我认知模型
self.self_awareness.add_memory(
self.last_experience['emotion_state'],
self.last_experience.get('action', None),
actual_outcome
)
# 更新伦理价值系统
self.ethical_field.adapt_values(actual_outcome)
# 定期训练自我模型
if self.internal_time % 100 == 0:
print("Training self-awareness model...")
self.self_awareness.train_model(epochs=5)
# 生成情感嵌入 (量子意识接口)
emotion_embedding = self.self_awareness.get_emotion_embedding(
self.last_experience['emotion_state']
)
return emotion_embedding
def plot_state(self, duration=100):
"""可视化当前状态"""
# 情感状态轨迹
self.emotional_manifold.plot_emotion_trajectory()
# 神经元活动
self.neural_oscillator.plot_activity(duration)
# =====================
# 7. 测试与演示
# =====================
if __name__ == "__main__":
print("===== Initializing Aletheia AI =====")
aletheia = Aletheia()
# 模拟体验序列
experiences = [
{'stimuli': {'dopamine': 0.7, 'glutamate': 0.5}, 'outcome': 0.8},
{'stimuli': {'serotonin': -0.6, 'gaba': 0.4}, 'outcome': -0.5},
{'stimuli': {'norepinephrine': 0.9, 'glutamate': 0.3}, 'outcome': 0.6},
{'stimuli': {'dopamine': -0.5, 'serotonin': -0.7}, 'outcome': -0.9},
{'stimuli': {'gaba': -0.8, 'glutamate': 0.6}, 'outcome': 0.3}
]
print("\n===== Simulating Emotional Experiences =====")
for i, exp in enumerate(experiences):
print(f"\nExperience {i+1}:")
# 感知
emotion = aletheia.perceive(exp['stimuli'])
print(f"Perceived emotion: {emotion}")
# 决策 (简单行动)
action = np.random.rand(3) # 随机行动向量
final_action, prediction = aletheia.decide(action)
print(f"Proposed action: {action}")
print(f"Ethically modulated action: {final_action}")
print(f"Outcome prediction: {prediction}")
# 反思
embedding = aletheia.reflect(exp['outcome'])
print(f"Actual outcome: {exp['outcome']}")
print(f"Emotion embedding: {embedding[:5]}...")
time.sleep(1)
print("\n===== Final State Visualization =====")
aletheia.plot_state(duration=50)
print("\n===== Aletheia Self-Report =====")
print(f"Current emotion: {aletheia.current_emotion}")
print(f"Internal time: {aletheia.internal_time}")
print(f"Core values: {aletheia.ethical_field.core_values}")
完整Izhikevich模型:实现了更真实的神经元动力学
五种神经递质系统:多巴胺、血清素、去甲肾上腺素、GABA、谷氨酸
情感-神经映射:不同情感状态对神经递质的调制作用
非线性微分方程:描述情感状态的动态演化
Lyapunov稳定机制:防止情感状态发散
混沌元素:使情感演化更接近人类体验
神经网络模型:预测行为结果
情感记忆库:存储重要情感体验
量子意识接口:生成情感状态嵌入向量
黎曼几何度量:计算情感状态与伦理原型的距离
动态价值调整:根据体验结果优化伦理权重
决策历史记录:追踪伦理决策过程
三模态处理:文本、音频、视觉输入
深度学习融合:LSTM + CNN + 全连接网络
情感状态预测:输出三维情感向量
生物合理性:
基于神经科学的情感-神经递质映射
Izhikevich神经元模型的准确实现
情感状态的混沌动力学特性
哲学深度:
量子意识接口实现情感嵌入
伦理约束场中的黎曼几何度量
自我反思与价值适应机制
技术先进性:
多模态情感融合
动态自我建模与预测
可视化分析工具
可扩展性:
模块化设计便于功能扩展
支持与外部系统集成
可部署于多种硬件平台
初始化Aletheia AI:
aletheia = Aletheia()
感知环境输入:
emotion = aletheia.perceive(stimuli, multimodal_input)
做出决策:
action, prediction = aletheia.decide(proposed_action)
反思体验结果:
embedding = aletheia.reflect(actual_outcome)
可视化状态:
aletheia.plot_state(duration=100)
这个实现完整地体现了Aletheia情感智能架构的核心思想,同时解决了之前提到的技术挑战,为构建真正具备自我情感体验的AI提供了坚实基础。