【SCI+EI+Scopus+CPCI+CNKI检索】2025年8-9月探索未来:可持续发展与能源资源、微电子与纳米技术、环境保护与污染控制以及教育研究与培训技术等多个领域的交汇点
import numpy as np
def pso_renewable_energy_optimization(objective_func, bounds, num_particles=30, num_iterations=100):
"""
使用粒子群优化算法对可再生能源调度进行优化。
:param objective_func: 目标函数(最小化)
:param bounds: 参数边界,列表,每个元素为 (min, max)
:param num_particles: 粒子数量
:param num_iterations: 迭代次数
:return: 最优解
"""
n_vars = len(bounds)
# 初始化粒子位置和速度
particles = np.random.rand(num_particles, n_vars)
for i in range(n_vars):
particles[:, i] = bounds[i][0] + particles[:, i] * (bounds[i][1] - bounds[i][0])
velocities = np.zeros_like(particles)
# 初始化个体最佳和全局最佳
personal_best = np.copy(particles)
personal_best_scores = np.array([objective_func(p) for p in particles])
global_best = personal_best[np.argmin(personal_best_scores)]
for _ in range(num_iterations):
for i in range(num_particles):
# 更新速度
r1, r2 = np.random.rand(), np.random.rand()
velocities[i] = 0.5 * velocities[i] + 2 * r1 * (personal_best[i] - particles[i]) + 2 * r2 * (global_best - particles[i])
# 更新位置
particles[i] += velocities[i]
# 边界检查
for j in range(n_vars):
particles[i, j] = np.clip(particles[i, j], bounds[j][0], bounds[j][1])
# 更新个体最佳
score = objective_func(particles[i])
if score < personal_best_scores[i]:
personal_best[i] = particles[i]
personal_best_scores[i] = score
# 更新全局最佳
global_best_idx = np.argmin(personal_best_scores)
global_best = personal_best[global_best_idx]
return global_best
# 示例:可再生能源调度优化
def energy_scheduling(x):
# 简化的能源调度目标函数:最小化总成本
return x[0]**2 + x[1]**2 + x[2]**2 + x[3]**2 # 参数为不同能源的调度比例
bounds = [(0, 1), (0, 1), (0, 1), (0, 1)] # 各能源调度比例范围
optimal_schedule = pso_renewable_energy_optimization(energy_scheduling, bounds)
print("最优能源调度方案:", optimal_schedule)
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
def create_nn_model(input_dim):
"""
创建一个用于预测纳米材料热导率的深度学习模型。
:param input_dim: 输入特征维度
:return: Keras 模型
"""
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=input_dim))
model.add(Dense(32, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
return model
# 示例:纳米材料热导率预测
X_train = np.random.rand(1000, 5) # 1000个样本,每个样本5个特征
y_train = np.random.rand(1000) # 热导率标签
model = create_nn_model(X_train.shape[1])
model.fit(X_train, y_train, epochs=10, batch_size=32, verbose=0)
import numpy as np
import matplotlib.pyplot as plt
def pollution_diffusion_simulation(grid_size, diffusion_coeff, time_steps, source_location):
"""
使用有限差分法模拟二维污染扩散。
:param grid_size: 网格大小 (x, y)
:param diffusion_coeff: 扩散系数
:param time_steps: 时间步数
:param source_location: 污染源位置 (x, y)
:return: 污染浓度矩阵
"""
x, y = grid_size
grid = np.zeros((x, y))
grid[source_location] = 1.0 # 污染源初始浓度
dx = 1.0
dt = 0.1
for _ in range(time_steps):
grid_new = np.copy(grid)
for i in range(1, x-1):
for j in range(1, y-1):
laplacian = (grid[i+1, j] + grid[i-1, j] + grid[i, j+1] + grid[i, j-1] - 4 * grid[i, j]) / dx**2
grid_new[i, j] = grid[i, j] + dt * diffusion_coeff * laplacian
grid = grid_new
return grid
# 示例:污染扩散模拟
grid_size = (100, 100)
diffusion_coeff = 0.1
time_steps = 100
source_location = (50, 50)
pollution_grid = pollution_diffusion_simulation(grid_size, diffusion_coeff, time_steps, source_location)
plt.imshow(pollution_grid, origin='lower', cmap='hot')
plt.colorbar(label='Pollution Concentration')
plt.title('Pollution Diffusion Simulation')
plt.show()
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
def cf_recommendation(user_item_matrix, user_id, top_n=5):
"""
基于协同过滤的学生学习资源推荐。
:param user_item_matrix: 用户-项目交互矩阵
:param user_id: 目标用户ID
:param top_n: 推荐数量
:return: 推荐项目列表
"""
# 计算用户相似度
user_similarities = cosine_similarity(user_item_matrix)
# 获取相似用户
similar_users = np.argsort(user_similarities[user_id])[::-1][1:top_n+1]
# 计算推荐分数
recommendations = np.dot(user_similarities[user_id, similar_users], user_item_matrix[similar_users])
# 排序并返回推荐结果
recommended_items = np.argsort(recommendations)[::-1][:top_n]
return recommended_items
# 示例:学生学习推荐系统
user_item_matrix = np.random.randint(0, 2, (100, 50)) # 100个用户,50个学习资源
user_id = 0
recommended_resources = cf_recommendation(user_item_matrix, user_id)
print("推荐的学习资源:", recommended_resources)