考虑边值问题:
∂ 2 u ∂ t 2 = ∂ ∂ x ( ( cos x + 2 ) ∂ u ∂ x ) − ( sin π x l ) u , ( x , t ) ∈ ( 0 , l ) × ( 0 , T ) , \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left( (\cos x + 2) \frac{\partial u}{\partial x} \right) - \left( \sin \frac{\pi x}{l} \right) u, \quad (x,t) \in (0,l) \times (0,T), ∂t2∂2u=∂x∂((cosx+2)∂x∂u)−(sinlπx)u,(x,t)∈(0,l)×(0,T),
初始条件:
u ( x , 0 ) = sin π x l , u t ( x , 0 ) = 0 , 0 ≤ x ≤ l , u(x,0) = \sin \frac{\pi x}{l}, \quad u_t(x,0) = 0, \quad 0 \leq x \leq l, u(x,0)=sinlπx,ut(x,0)=0,0≤x≤l,
边界条件:
u ( 0 , t ) = u ( l , t ) = 0 , 0 ≤ t ≤ T . u(0,t) = u(l,t) = 0, \quad 0 \leq t \leq T. u(0,t)=u(l,t)=0,0≤t≤T.
该问题中的空间算子为:
L u = ∂ ∂ x ( ( cos x + 2 ) ∂ u ∂ x ) − sin π x l u , \mathcal{L} u = \frac{\partial}{\partial x} \left( (\cos x + 2) \frac{\partial u}{\partial x} \right) - \sin \frac{\pi x}{l} u, Lu=∂x∂((cosx+2)∂x∂u)−sinlπxu,
且方程可写为 u t t = L u u_{tt} = \mathcal{L} u utt=Lu。算子 L \mathcal{L} L 是自伴算子,对应的 Sturm-Liouville 问题为:
− d d x ( ( cos x + 2 ) d ϕ d x ) + sin π x l ϕ = λ ϕ , ϕ ( 0 ) = ϕ ( l ) = 0. -\frac{d}{dx} \left( (\cos x + 2) \frac{d\phi}{dx} \right) + \sin \frac{\pi x}{l} \phi = \lambda \phi, \quad \phi(0) = \phi(l) = 0. −dxd((cosx+2)dxdϕ)+sinlπxϕ=λϕ,ϕ(0)=ϕ(l)=0.
该 Sturm-Liouville 问题的特征值 λ n > 0 \lambda_n > 0 λn>0(因为 p ( x ) = cos x + 2 ≥ 1 > 0 p(x) = \cos x + 2 \geq 1 > 0 p(x)=cosx+2≥1>0, q ( x ) = sin π x l ≥ 0 q(x) = \sin \frac{\pi x}{l} \geq 0 q(x)=sinlπx≥0,且边界条件为 Dirichlet 零边界),对应的特征函数为 { ϕ n ( x ) } n = 1 ∞ \{\phi_n(x)\}_{n=1}^{\infty} {ϕn(x)}n=1∞,它们构成 L 2 ( 0 , l ) L^2(0,l) L2(0,l) 空间中的正交基。
设解的形式为:
u ( x , t ) = ∑ n = 1 ∞ T n ( t ) ϕ n ( x ) . u(x,t) = \sum_{n=1}^{\infty} T_n(t) \phi_n(x). u(x,t)=n=1∑∞Tn(t)ϕn(x).
代入方程得:
∑ n = 1 ∞ T n ′ ′ ( t ) ϕ n ( x ) = ∑ n = 1 ∞ T n ( t ) L ϕ n ( x ) = ∑ n = 1 ∞ λ n T n ( t ) ϕ n ( x ) , \sum_{n=1}^{\infty} T_n''(t) \phi_n(x) = \sum_{n=1}^{\infty} T_n(t) \mathcal{L} \phi_n(x) = \sum_{n=1}^{\infty} \lambda_n T_n(t) \phi_n(x), n=1∑∞Tn′′(t)ϕn(x)=n=1∑∞Tn(t)Lϕn(x)=n=1∑∞λnTn(t)ϕn(x),
因此对每个 n n n,有:
T n ′ ′ ( t ) = λ n T n ( t ) . T_n''(t) = \lambda_n T_n(t). Tn′′(t)=λnTn(t).
解此常微分方程,并考虑特征值 λ n > 0 \lambda_n > 0 λn>0,令 ω n = λ n \omega_n = \sqrt{\lambda_n} ωn=λn,则通解为:
T n ( t ) = A n cosh ( ω n t ) + B n sinh ( ω n t ) . T_n(t) = A_n \cosh(\omega_n t) + B_n \sinh(\omega_n t). Tn(t)=Ancosh(ωnt)+Bnsinh(ωnt).
利用初始条件 u t ( x , 0 ) = 0 u_t(x,0) = 0 ut(x,0)=0:
u t ( x , 0 ) = ∑ n = 1 ∞ T n ′ ( 0 ) ϕ n ( x ) = 0 , u_t(x,0) = \sum_{n=1}^{\infty} T_n'(0) \phi_n(x) = 0, ut(x,0)=n=1∑∞Tn′(0)ϕn(x)=0,
其中:
T n ′ ( t ) = ω n A n sinh ( ω n t ) + ω n B n cosh ( ω n t ) , T_n'(t) = \omega_n A_n \sinh(\omega_n t) + \omega_n B_n \cosh(\omega_n t), Tn′(t)=ωnAnsinh(ωnt)+ωnBncosh(ωnt),
代入 t = 0 t=0 t=0:
T n ′ ( 0 ) = ω n B n = 0 ⟹ B n = 0. T_n'(0) = \omega_n B_n = 0 \implies B_n = 0. Tn′(0)=ωnBn=0⟹Bn=0.
故:
T n ( t ) = A n cosh ( ω n t ) . T_n(t) = A_n \cosh(\omega_n t). Tn(t)=Ancosh(ωnt).
利用初始条件 u ( x , 0 ) = sin π x l u(x,0) = \sin \frac{\pi x}{l} u(x,0)=sinlπx:
u ( x , 0 ) = ∑ n = 1 ∞ A n ϕ n ( x ) = sin π x l . u(x,0) = \sum_{n=1}^{\infty} A_n \phi_n(x) = \sin \frac{\pi x}{l}. u(x,0)=n=1∑∞Anϕn(x)=sinlπx.
因此,系数 A n A_n An 由投影给出:
A n = ⟨ sin π x l , ϕ n ⟩ ⟨ ϕ n , ϕ n ⟩ = ∫ 0 l sin π x l ϕ n ( x ) d x ∫ 0 l ϕ n 2 ( x ) d x . A_n = \frac{\langle \sin \frac{\pi x}{l}, \phi_n \rangle}{\langle \phi_n, \phi_n \rangle} = \frac{\int_0^l \sin \frac{\pi x}{l} \phi_n(x) dx}{\int_0^l \phi_n^2(x) dx}. An=⟨ϕn,ϕn⟩⟨sinlπx,ϕn⟩=∫0lϕn2(x)dx∫0lsinlπxϕn(x)dx.
解的 Fourier 展开式为:
u ( x , t ) = ∑ n = 1 ∞ A n cosh ( λ n t ) ϕ n ( x ) \boxed{u(x,t) = \sum_{n=1}^{\infty} A_n \cosh\left( \sqrt{\lambda_n} t \right) \phi_n(x)} u(x,t)=n=1∑∞Ancosh(λnt)ϕn(x)
其中 λ n \lambda_n λn 和 ϕ n ( x ) \phi_n(x) ϕn(x) 是 Sturm-Liouville 问题
− d d x ( ( cos x + 2 ) d ϕ d x ) + sin π x l ϕ = λ ϕ , ϕ ( 0 ) = ϕ ( l ) = 0 -\frac{d}{dx}\left( (\cos x + 2) \frac{d\phi}{dx} \right) + \sin \frac{\pi x}{l} \phi = \lambda \phi, \quad \phi(0) = \phi(l) = 0 −dxd((cosx+2)dxdϕ)+sinlπxϕ=λϕ,ϕ(0)=ϕ(l)=0
的特征值和特征函数,且
A n = ∫ 0 l sin π x l ϕ n ( x ) d x ∫ 0 l ϕ n 2 ( x ) d x . A_n = \frac{\int_0^l \sin \frac{\pi x}{l} \phi_n(x) dx}{\int_0^l \phi_n^2(x) dx}. An=∫0lϕn2(x)dx∫0lsinlπxϕn(x)dx.
定义:
E ( t ) = ∫ 0 l [ ( cos x + 2 ) ( u x ) 2 + ( sin π x l ) u 2 + ( u t ) 2 ] d x . \mathcal{E}(t) = \int_0^l \left[ (\cos x + 2) (u_x)^2 + \left( \sin \frac{\pi x}{l} \right) u^2 + (u_t)^2 \right] dx. E(t)=∫0l[(cosx+2)(ux)2+(sinlπx)u2+(ut)2]dx.
为证明 E ( t ) \mathcal{E}(t) E(t) 与时间无关,需证 d E d t = 0 \frac{d\mathcal{E}}{dt} = 0 dtdE=0.
计算导数:
d E d t = ∫ 0 l ∂ ∂ t [ ( cos x + 2 ) ( u x ) 2 + sin π x l u 2 + ( u t ) 2 ] d x . \frac{d\mathcal{E}}{dt} = \int_0^l \frac{\partial}{\partial t} \left[ (\cos x + 2) (u_x)^2 + \sin \frac{\pi x}{l} u^2 + (u_t)^2 \right] dx. dtdE=∫0l∂t∂[(cosx+2)(ux)2+sinlπxu2+(ut)2]dx.
由于积分限与 t t t 无关,且被积函数中的系数仅依赖于 x x x,有:
d E d t = ∫ 0 l [ 2 ( cos x + 2 ) u x ∂ u x ∂ t + 2 sin π x l u u t + 2 u t u t t ] d x . \frac{d\mathcal{E}}{dt} = \int_0^l \left[ 2 (\cos x + 2) u_x \frac{\partial u_x}{\partial t} + 2 \sin \frac{\pi x}{l} u u_t + 2 u_t u_{tt} \right] dx. dtdE=∫0l[2(cosx+2)ux∂t∂ux+2sinlπxuut+2ututt]dx.
由混合导数性质, ∂ u x ∂ t = ∂ ∂ x ( u t ) \frac{\partial u_x}{\partial t} = \frac{\partial}{\partial x} (u_t) ∂t∂ux=∂x∂(ut),故:
d E d t = 2 ∫ 0 l [ ( cos x + 2 ) u x ( u t ) x + sin π x l u u t + u t u t t ] d x . \frac{d\mathcal{E}}{dt} = 2 \int_0^l \left[ (\cos x + 2) u_x (u_t)_x + \sin \frac{\pi x}{l} u u_t + u_t u_{tt} \right] dx. dtdE=2∫0l[(cosx+2)ux(ut)x+sinlπxuut+ututt]dx.
利用原方程 u t t = ∂ ∂ x ( ( cos x + 2 ) u x ) − sin π x l u u_{tt} = \frac{\partial}{\partial x} \left( (\cos x + 2) u_x \right) - \sin \frac{\pi x}{l} u utt=∂x∂((cosx+2)ux)−sinlπxu,代入:
d E d t = 2 ∫ 0 l [ ( cos x + 2 ) u x ( u t ) x + sin π x l u u t + u t ( ∂ ∂ x ( ( cos x + 2 ) u x ) − sin π x l u ) ] d x . \frac{d\mathcal{E}}{dt} = 2 \int_0^l \left[ (\cos x + 2) u_x (u_t)_x + \sin \frac{\pi x}{l} u u_t + u_t \left( \frac{\partial}{\partial x} \left( (\cos x + 2) u_x \right) - \sin \frac{\pi x}{l} u \right) \right] dx. dtdE=2∫0l[(cosx+2)ux(ut)x+sinlπxuut+ut(∂x∂((cosx+2)ux)−sinlπxu)]dx.
简化:
d E d t = 2 ∫ 0 l [ ( cos x + 2 ) u x ( u t ) x + u t ∂ ∂ x ( ( cos x + 2 ) u x ) ] d x , \frac{d\mathcal{E}}{dt} = 2 \int_0^l \left[ (\cos x + 2) u_x (u_t)_x + u_t \frac{\partial}{\partial x} \left( (\cos x + 2) u_x \right) \right] dx, dtdE=2∫0l[(cosx+2)ux(ut)x+ut∂x∂((cosx+2)ux)]dx,
因为 sin π x l u u t − u t sin π x l u = 0 \sin \frac{\pi x}{l} u u_t - u_t \sin \frac{\pi x}{l} u = 0 sinlπxuut−utsinlπxu=0。注意到:
( cos x + 2 ) u x ( u t ) x + u t ∂ ∂ x ( ( cos x + 2 ) u x ) = ∂ ∂ x [ ( cos x + 2 ) u x u t ] , (\cos x + 2) u_x (u_t)_x + u_t \frac{\partial}{\partial x} \left( (\cos x + 2) u_x \right) = \frac{\partial}{\partial x} \left[ (\cos x + 2) u_x u_t \right], (cosx+2)ux(ut)x+ut∂x∂((cosx+2)ux)=∂x∂[(cosx+2)uxut],
由乘积法则:
∂ ∂ x ( A B ) = A x B + A B x , A = ( cos x + 2 ) u x , B = u t . \frac{\partial}{\partial x} (A B) = A_x B + A B_x, \quad A = (\cos x + 2) u_x, B = u_t. ∂x∂(AB)=AxB+ABx,A=(cosx+2)ux,B=ut.
因此:
d E d t = 2 ∫ 0 l ∂ ∂ x [ ( cos x + 2 ) u x u t ] d x = 2 [ ( cos x + 2 ) u x u t ] x = 0 x = l . \frac{d\mathcal{E}}{dt} = 2 \int_0^l \frac{\partial}{\partial x} \left[ (\cos x + 2) u_x u_t \right] dx = 2 \left[ (\cos x + 2) u_x u_t \right]_{x=0}^{x=l}. dtdE=2∫0l∂x∂[(cosx+2)uxut]dx=2[(cosx+2)uxut]x=0x=l.
由边界条件 u ( 0 , t ) = u ( l , t ) = 0 u(0,t) = u(l,t) = 0 u(0,t)=u(l,t)=0 对所有 t t t,有:
u t ( 0 , t ) = ∂ u ∂ t ( 0 , t ) = 0 , u t ( l , t ) = ∂ u ∂ t ( l , t ) = 0 , u_t(0,t) = \frac{\partial u}{\partial t}(0,t) = 0, \quad u_t(l,t) = \frac{\partial u}{\partial t}(l,t) = 0, ut(0,t)=∂t∂u(0,t)=0,ut(l,t)=∂t∂u(l,t)=0,
因为 u u u 在边界上恒为零。故:
[ ( cos x + 2 ) u x u t ] x = l = 0 , [ ( cos x + 2 ) u x u t ] x = 0 = 0. \left[ (\cos x + 2) u_x u_t \right]_{x=l} = 0, \quad \left[ (\cos x + 2) u_x u_t \right]_{x=0} = 0. [(cosx+2)uxut]x=l=0,[(cosx+2)uxut]x=0=0.
因此:
d E d t = 2 ( 0 − 0 ) = 0. \frac{d\mathcal{E}}{dt} = 2 (0 - 0) = 0. dtdE=2(0−0)=0.
即 E ( t ) \mathcal{E}(t) E(t) 与时间无关。
(1) u ( x , t ) = ∑ n = 1 ∞ A n cosh ( λ n t ) ϕ n ( x ) 其中 λ n 和 ϕ n ( x ) 是 Sturm-Liouville 问题 − d d x ( ( cos x + 2 ) d ϕ d x ) + sin π x l ϕ = λ ϕ , ϕ ( 0 ) = ϕ ( l ) = 0 的特征值和特征函数, A n = ∫ 0 l sin π x l ϕ n ( x ) d x ∫ 0 l ϕ n 2 ( x ) d x (2) E ( t ) 与时间无关 \boxed{ \begin{array}{c} \text{(1) } \\ u(x,t) = \sum_{n=1}^{\infty} A_n \cosh\left( \sqrt{\lambda_n} t \right) \phi_n(x) \\ \text{其中 } \lambda_n \text{ 和 } \phi_n(x) \text{ 是 Sturm-Liouville 问题} \\ -\dfrac{d}{dx}\left( (\cos x + 2) \dfrac{d\phi}{dx} \right) + \sin \dfrac{\pi x}{l} \phi = \lambda \phi, \\ \phi(0) = \phi(l) = 0 \\ \text{的特征值和特征函数,} \\ A_n = \dfrac{\int_0^l \sin \dfrac{\pi x}{l} \phi_n(x) dx}{\int_0^l \phi_n^2(x) dx} \\ \\ \text{(2) } \mathcal{E}(t) \text{ 与时间无关} \end{array} } (1) u(x,t)=∑n=1∞Ancosh(λnt)ϕn(x)其中 λn 和 ϕn(x) 是 Sturm-Liouville 问题−dxd((cosx+2)dxdϕ)+sinlπxϕ=λϕ,ϕ(0)=ϕ(l)=0的特征值和特征函数,An=∫0lϕn2(x)dx∫0lsinlπxϕn(x)dx(2) E(t) 与时间无关
最终答案:
(1) u ( x , t ) = ∑ n = 1 ∞ A n cosh ( λ n t ) ϕ n ( x ) 其中 λ n 和 ϕ n ( x ) 是 Sturm-Liouville 问题 − d d x ( ( cos x + 2 ) d ϕ d x ) + sin π x l ϕ = λ ϕ , ϕ ( 0 ) = ϕ ( l ) = 0 的特征值和特征函数, A n = ∫ 0 l sin π x l ϕ n ( x ) d x ∫ 0 l ϕ n 2 ( x ) d x (2) E ( t ) 与时间无关 \boxed{ \begin{array}{c} \text{(1) } \\ u(x,t) = \sum_{n=1}^{\infty} A_n \cosh\left( \sqrt{\lambda_n} t \right) \phi_n(x) \\ \text{其中 } \lambda_n \text{ 和 } \phi_n(x) \text{ 是 Sturm-Liouville 问题} \\ -\dfrac{d}{dx}\left( (\cos x + 2) \dfrac{d\phi}{dx} \right) + \sin \dfrac{\pi x}{l} \phi = \lambda \phi, \\ \phi(0) = \phi(l) = 0 \\ \text{的特征值和特征函数,} \\ A_n = \dfrac{\displaystyle \int_0^l \sin \dfrac{\pi x}{l} \phi_n(x) dx}{\displaystyle \int_0^l \phi_n^2(x) dx} \\ \\ \text{(2) } \mathcal{E}(t) \text{ 与时间无关} \end{array} } (1) u(x,t)=∑n=1∞Ancosh(λnt)ϕn(x)其中 λn 和 ϕn(x) 是 Sturm-Liouville 问题−dxd((cosx+2)dxdϕ)+sinlπxϕ=λϕ,ϕ(0)=ϕ(l)=0的特征值和特征函数,An=∫0lϕn2(x)dx∫0lsinlπxϕn(x)dx(2) E(t) 与时间无关