深度学习流体力学【干货】

 深度学习作为一种新兴的机器学习技术,为流体科学的研究提供了新的思路和方法。通过对大量数据的学习和分析,深度学习模型可以自动提取特征和模式,为流体科学中的复杂问题提供解决方案。然而,深度学习在流体科学中的应用还面临一些挑战,需要进一步研究和探索。未来,深度学习与传统流体力学方法的结合将成为流体科学研究的重要方向,多模态数据的融合、模型的可解释性、实时预测和控制等将是深度学习在流体科学中发展的重点。相信随着技术的不断进步和研究的深入,深度学习在流体科学中的应用前景将更加广阔。

目标

深度学习在流体力学中的应用案例分析:分析深度学习在流体力学中的流场预测、边界条件识别、湍流模拟以及优化问题求解等方面的应用案例,深入了解其实际应用场景。

实践项目:包括流场预测、边界条件识别、湍流模拟以及优化问题求解等实践项目,通过动手操作,加深对深度学习与流体力学理论的理解,并培养实际问题解决能力。

每天规划

第一天的课程重点在于深度学习与流体力学基础知识的构建,为后面四天的培训内容打好基础。同时还回顾了深度学习的基本概念及其网络架构,包括全连接神经网络(FCNN)、卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、生成对抗网络(GAN)和深度强化学习(DQN)。学员们通过实际案例实践,学习如何从数据处理到模型预测的全过程,并掌握了经典流体力学的基本方程及其在工业领域中的应用。  

第二天聚焦于计算流体力学与人工智能的实际结合。探讨了数据驱动方法与传统CFD的区别,并深入介绍了Python在CFD数据处理中的应用。课程还涵盖了机器学习在CFD中的应用,包括有限体积的数值模拟和相干结构案例分析,以及如何利用物理信息神经网络(PINNs)解决Navier-Stokes方程等复杂问题。  

第三天的培训内容专注于基于OpenFOAM的流体力学仿真和深度学习驱动的应用。学员们学习了OpenFOAM的编译、安装与运行,掌握了如何使用OpenFOAM进行流体仿真操作与数据采集,并通过深度学习模型进行流体仿真数据的预测和训练,包括使用LSTM和深度强化学习(DQN)模型进行流体模拟。 

第四天的课程将焦点转向了ANSYS Fluent与深度学习的结合。介绍了ANSYS Fluent的安装与使用,以及如何利用Python与Fluent进行交互。学员们学习了ANSYS Fluent流体仿真数据的采集、生成与特征提取,并通过实际案例掌握了基于深度学习的ANSYS Fluent流体力学仿真应用。   

第五天则深入探讨了AI模型在流体力学领域的前沿应用、科研论文和源代码剖析,包括流场识别、预测、重构与优化,基于U-Net架构的非均匀稳定层流近似方法,扩散模型驱动的流体力学方法,图神经网络在CFD模型预测中的应用等。课程还涵盖了如何在HPC上耦合强化学习与CFD进行分布式联合仿真,提供了使用去噪扩散概率模型进行翼型流动模拟的不确定性替代模型等前沿技术和实际操作的指导。

第一天:深度学习与流体力学基础

免费提供给学员的资料:案例文件+数据+源代码+部分核心代码中文注释

核心要点:

  • 了解深度学习的基本概念和网络架构:帮助学员建立扎实的理论基础,掌握各类神经网络的核心原理。

  • 深度学习案例实践:通过实际案例,指导学员从数据准备到模型预测的完整流程。

  • 经典流体力学理论复习:温习和巩固流体力学的基本方程和求解方法,增强对流体力学的理解。

  • 深度学习与流体力学结合案例分析:通过实际案例,展示深度学习在流体力学中的应用,激发学员的兴趣。

课程目录:

1.深度学习基本概念与网络架构

你可能感兴趣的:(人工智能,深度学习,python,机器学习)