pytorch底层原理学习--PyTorch 架构梳理

文章目录

      • PyTorch 完整架构流程图
      • 关键组件详解
      • 完整执行流程示例

PyTorch 架构梳理

PyTorch 完整架构流程图

硬件层
后端层
C++ 部署层
核心引擎 (libtorch C++)
绑定层
Python 层
加载
调用
训练模式
编译模式
推理模式
生成
CPU
GPU
CPU Kernels
CUDA Kernels
C++ 代码
torch::jit::load('model.pt')
module.forward(inputs)
libtorch C++ Frontend
训练路径
Autograd Engine
动态图记录
梯度计算
JIT 编译
语法解析
生成 IR
图优化
序列化 (.pt 文件)
JIT 执行
加载 IR
设备优化
无梯度执行
ATen (张量库)
Operator Dispatch
pybind11 Bindings
Python 代码
Python Frontend (torch, torch.nn)
Eager 操作
动态图构建
JIT 接口 (torch.jit.script/trace)
model.pt
Hardware
Core Engine
Binding Layer
Python Layer
Via
Via
CPU Instructions
CUDA Instructions
GPU Execution
C++ Frontend
libtorch
Autograd Engine
Dynamic Graph Construction
ATen
Tensor Library
Operator Dispatch
CPU Kernels
MKL/OpenMP/BLAS
CUDA Kernels
cuDNN/cuBLAS
TorchScript IR
Intermediate Representation
Graph Optimization
Fusion/Dead Code Elim
Graph Execution
pybind11 Bindings
Python Frontend
torch.nn, torch.optim, torch.Tensor
Python Code
Model/Training Scripts
Eager Execution
Immediate Operation Execution
Graph Execution
JIT/TorchScript

关键组件详解

  1. Python Code

    • 作用:用户编写的模型定义、训练脚本
    • 示例model = nn.Linear(10, 2); output = model(input)
    • 特点:高级API,易用性强
  2. Python Frontend

    • 组成torch, torch.nn, torch.optim等模块
    • 功能:提供神经网络层、优化器、张量操作等高级接口
    • 关键类Tensor, Module, Optimizer
  3. Eager Execution

    • 机制:命令式编程模式,操作立即执行
    • 优点:调试方便,动态图灵活性高
    • 示例x = torch.tensor([1.0]); y = x * 2 (立即计算)
  4. JIT/TorchScript

    • 作用:将Python模型编译为优化后的静态图
    • 流程torch.jit.script(model) → 生成IR → 优化
    • 优势:部署友好,性能优化空间大
  5. pybind11 Bindings

    • 功能:Python与C++间的双向绑定层
    • 实现:自动生成包装代码,实现无缝调用
    • 效率:接近原生C++性能的跨语言调用
  6. Libtorch

    组件 功能
    TorchScript 支持 加载/执行 Python 导出的模型(.pt 文件)
    ATen 张量库 核心张量操作(CPU/CUDA)
    神经网络APIC++ Frontend torch::nn 命名空间下的层实现
    自动求导引擎Autograd C++ 环境下的 autograd 支持
    多后端支持C++ Extensions CPU/CUDA/ROCM 硬件加速
    • 定位:PyTorch的C++核心库
    • 功能:提供与Python API对应的C++接口
    • 使用场景:高性能推理、嵌入式部署
  7. Autograd Engine

    • 核心功能:动态构建计算图并管理梯度计算
  8. ATen (A Tensor Library)

    • 角色:PyTorch的核心张量库
    • 特性
      • 500+张量操作
      • 统一CPU/CUDA接口
      • 自动微分支持
    • 路径aten/src/ATen/native/ (算子实现)
  9. Intermediate Representation (IR)

    • 作用:TorchScript的中间表示形式
    • 结构:基于图的表示,包含节点(Node)、边(Edge)
    • 优化:常量折叠、算子融合等
  10. Operator Dispatch

    • 机制:根据设备类型分发算子

    • 伪代码

      def add(tensor):
          if tensor.device == 'cuda':
              return cuda_add_kernel(tensor)
          else:
              return cpu_add_kernel(tensor)
      
  11. CPU Kernels

    • 优化技术
      • SIMD指令集 (AVX2/AVX512)
      • 多线程并行 (OpenMP)
      • 数学加速库 (MKL, oneDNN)
    • 典型操作:矩阵乘法、卷积等
  12. CUDA Kernels

    • 架构

      CUDA Kernel
      线程块
      32线程束
      单个线程
    • 加速库:cuDNN (深度学习), cuBLAS (线性代数)

    • 异步执行:通过CUDA流实现计算/传输并行

完整执行流程示例

Python Code Python Frontend pybind11 C++ Frontend Autograd Engine ATen CUDA Kernel model(input) 张量操作请求 调用libtorch 记录前向图 执行张量计算 分发到CUDA内核 结果返回 存储梯度函数 返回输出张量 C++ → Python 返回结果 获得预测结果 Python Code Python Frontend pybind11 C++ Frontend Autograd Engine ATen CUDA Kernel

参考资料:

《deep learning with pytorch》15.3 与PyTorch JIT 编译器交互,第一版中文版

PyTorch

PyTorch Architecture | harleyszhang/llm_note | DeepWiki

(PyTorch源码分析(1)- 整体预览 - 知乎

《PyTorch: An Imperative Style, High-Performance Deep Learning Library》
https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
https://pytorch.org/blog/a-tour-of-pytorch-internals-2/
https://zhuanlan.zhihu.com/p/598044604
https://zhuanlan.zhihu.com/p/708375873
https://zhuanlan.zhihu.com/p/338256656
https://blog.ezyang.com/2019/05/pytorch-internals/
https://deepwiki.com/harleyszhang/llm_note/5.2-pytorch-architecture?utm_source=chatgpt.com
https://medium.com/@hxu296/a-trip-to-kernels-understanding-pytorchs-internal-architecture-fc955aafd54c
https://zhuanlan.zhihu.com/p/609288586
https://mlfrontiers.substack.com/p/understanding-ml-compilers-the-journey
https://se.ewi.tudelft.nl/desosa2019/chapters/pytorch/#fnref:3
https://medium.com/@hxu296/a-trip-to-kernels-understanding-pytorchs-internal-architecture-fc955aafd54c
https://blog.christianperone.com/2018/03/pytorch-internal-architecture-tour/
https://docs.pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-a-general-checkpoint-for-inference-and-or-resuming-training

你可能感兴趣的:(深度学习,pytorch,架构,人工智能)