import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras
from keras import layers
import gymnasium as gym
from gymnasium.wrappers import AtariPreprocessing, FrameStack
import numpy as np
import tensorflow as tf
# Configuration parameters for the whole setup
seed = 42
gamma = 0.99 # Discount factor for past rewards
epsilon = 1.0 # Epsilon greedy parameter
epsilon_min = 0.1 # Minimum epsilon greedy parameter
epsilon_max = 1.0 # Maximum epsilon greedy parameter
epsilon_interval = (
epsilon_max - epsilon_min
) # Rate at which to reduce chance of random action being taken
batch_size = 32 # Size of batch taken from replay buffer
max_steps_per_episode = 10000
max_episodes = 10 # Limit training episodes, will run until solved if smaller than 1
# Use the Atari environment
# Specify the `render_mode` parameter to show the attempts of the agent in a pop up window.
env = gym.make("BreakoutNoFrameskip-v4") # , render_mode="human")
# Environment preprocessing
env = AtariPreprocessing(env)
# Stack four frames
env = FrameStack(env, 4)
# env.seed(seed) # 删除或注释掉这一行
env.unwrapped.seed(seed) # 推荐写法
num_actions = 4
def create_q_model():
# Network defined by the Deepmind paper
return keras.Sequential(
[
layers.Lambda(
lambda tensor: keras.ops.transpose(tensor, [0, 2, 3, 1]),
output_shape=(84, 84, 4),
input_shape=(4, 84, 84),
),
# Convolutions on the frames on the screen
layers.Conv2D(32, 8, strides=4, activation="relu", input_shape=(4, 84, 84)),
layers.Conv2D(64, 4, strides=2, activation="relu"),
layers.Conv2D(64, 3, strides=1, activation="relu"),
layers.Flatten(),
layers.Dense(512, activation="relu"),
layers.Dense(num_actions, activation="linear"),
]
)
# The first model makes the predictions for Q-values which are used to
# make a action.
model = create_q_model()
# Build a target model for the prediction of future rewards.
# The weights of a target model get updated every 10000 steps thus when the
# loss between the Q-values is calculated the target Q-value is stable.
model_target = create_q_model()
# In the Deepmind paper they use RMSProp however then Adam optimizer
# improves training time
optimizer = keras.optimizers.Adam(learning_rate=0.00025, clipnorm=1.0)
# Experience replay buffers
action_history = []
state_history = []
state_next_history = []
rewards_history = []
done_history = []
episode_reward_history = []
running_reward = 0
episode_count = 0
frame_count = 0
# Number of frames to take random action and observe output
epsilon_random_frames = 50000
# Number of frames for exploration
epsilon_greedy_frames = 1000000.0
# Maximum replay length
# Note: The Deepmind paper suggests 1000000 however this causes memory issues
max_memory_length = 100000
# Train the model after 4 actions
update_after_actions = 4
# How often to update the target network
update_target_network = 10000
# Using huber loss for stability
loss_function = keras.losses.Huber()
while True:
observation, _ = env.reset()
state = np.array(observation)
episode_reward = 0
for timestep in range(1, max_steps_per_episode):
frame_count += 1
# Use epsilon-greedy for exploration
if frame_count < epsilon_random_frames or epsilon > np.random.rand(1)[0]:
# Take random action
action = np.random.choice(num_actions)
else:
# Predict action Q-values
# From environment state
state_tensor = keras.ops.convert_to_tensor(state)
state_tensor = keras.ops.expand_dims(state_tensor, 0)
action_probs = model(state_tensor, training=False)
# Take best action
action = keras.ops.argmax(action_probs[0]).numpy()
# Decay probability of taking random action
epsilon -= epsilon_interval / epsilon_greedy_frames
epsilon = max(epsilon, epsilon_min)
# Apply the sampled action in our environment
state_next, reward, done, _, _ = env.step(action)
state_next = np.array(state_next)
episode_reward += reward
# Save actions and states in replay buffer
action_history.append(action)
state_history.append(state)
state_next_history.append(state_next)
done_history.append(done)
rewards_history.append(reward)
state = state_next
# Update every fourth frame and once batch size is over 32
if frame_count % update_after_actions == 0 and len(done_history) > batch_size:
# Get indices of samples for replay buffers
indices = np.random.choice(range(len(done_history)), size=batch_size)
# Using list comprehension to sample from replay buffer
state_sample = np.array([state_history[i] for i in indices])
state_next_sample = np.array([state_next_history[i] for i in indices])
rewards_sample = [rewards_history[i] for i in indices]
action_sample = [action_history[i] for i in indices]
done_sample = keras.ops.convert_to_tensor(
[float(done_history[i]) for i in indices]
)
# Build the updated Q-values for the sampled future states
# Use the target model for stability
future_rewards = model_target.predict(state_next_sample)
# Q value = reward + discount factor * expected future reward
updated_q_values = rewards_sample + gamma * keras.ops.amax(
future_rewards, axis=1
)
# If final frame set the last value to -1
updated_q_values = updated_q_values * (1 - done_sample) - done_sample
# Create a mask so we only calculate loss on the updated Q-values
masks = keras.ops.one_hot(action_sample, num_actions)
with tf.GradientTape() as tape:
# Train the model on the states and updated Q-values
q_values = model(state_sample)
# Apply the masks to the Q-values to get the Q-value for action taken
q_action = keras.ops.sum(keras.ops.multiply(q_values, masks), axis=1)
# Calculate loss between new Q-value and old Q-value
loss = loss_function(updated_q_values, q_action)
# Backpropagation
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if frame_count % update_target_network == 0:
# update the the target network with new weights
model_target.set_weights(model.get_weights())
# Log details
template = "running reward: {:.2f} at episode {}, frame count {}"
print(template.format(running_reward, episode_count, frame_count))
# Limit the state and reward history
if len(rewards_history) > max_memory_length:
del rewards_history[:1]
del state_history[:1]
del state_next_history[:1]
del action_history[:1]
del done_history[:1]
if done:
break
# Update running reward to check condition for solving
episode_reward_history.append(episode_reward)
if len(episode_reward_history) > 100:
del episode_reward_history[:1]
running_reward = np.mean(episode_reward_history)
episode_count += 1
if running_reward > 40: # Condition to consider the task solved
print("Solved at episode {}!".format(episode_count))
break
if (
max_episodes > 0 and episode_count >= max_episodes
): # Maximum number of episodes reached
print("Stopped at episode {}!".format(episode_count))
break
随着训练的进行,智能体在Atari Breakout游戏中的表现逐渐提高,能够获得更高的分数。智能体的策略逐渐优化,能够更有效地击打砖块并避免球掉落。
在初期训练阶段(前 100 集),智能体因 ε 值保持在 1.0 而完全依赖随机行动,得分几乎为 0,实验中常见其频繁发射小球却始终无法击中砖块,平均奖励仅在 0 到 5 之间波动。进入探索阶段(100-500 集)后,随着 ε 从 1.0 逐步衰减至 0.1,智能体开始尝试学习击球策略,虽仍处于探索状态,但偶尔能成功击中砖块,平均奖励随之提升至 10-20,不过由于策略尚未稳定,训练曲线呈现出明显的波动。
当训练推进到稳定提升阶段(500-1000 集),智能体已掌握基本的击球技巧,能够持续得分,平均奖励突破 30,部分剧集得分甚至超过 50,此时可观察到智能体优先击打底部砖块,以最大化连击机会的策略倾向。而在收敛阶段(1000 集后),智能体策略趋于稳定,平均奖励达到 40 以上并触发终止条件,此时其表现出更复杂的技巧,例如通过故意漏球来重置游戏以获取更高分数,展现出对游戏机制的深度适应。
实验结果显示,DQN 通过经验回放和目标网络解决了深度神经网络与强化学习结合时的不稳定性,成功将 Q 学习应用于图像输入场景。Breakout 实验验证了其在视觉决策任务中的有效性,但也暴露了不足:如对超参数敏感、在复杂场景中收敛慢。后续算法(如 Double DQN、Dueling DQN)在此基础上进一步优化了性能。