实验代码
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras
from keras import layers
import numpy as np
import tensorflow as tf
import gymnasium as gym
import scipy.signal
def discounted_cumulative_sums(x, discount):
# Discounted cumulative sums of vectors for computing rewards-to-go and advantage estimates
return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1]
class Buffer:
# Buffer for storing trajectories
def __init__(self, observation_dimensions, size, gamma=0.99, lam=0.95):
# Buffer initialization
self.observation_buffer = np.zeros(
(size, observation_dimensions), dtype=np.float32
)
self.action_buffer = np.zeros(size, dtype=np.int32)
self.advantage_buffer = np.zeros(size, dtype=np.float32)
self.reward_buffer = np.zeros(size, dtype=np.float32)
self.return_buffer = np.zeros(size, dtype=np.float32)
self.value_buffer = np.zeros(size, dtype=np.float32)
self.logprobability_buffer = np.zeros(size, dtype=np.float32)
self.gamma, self.lam = gamma, lam
self.pointer, self.trajectory_start_index = 0, 0
def store(self, observation, action, reward, value, logprobability):
# Append one step of agent-environment interaction
self.observation_buffer[self.pointer] = observation
self.action_buffer[self.pointer] = action
self.reward_buffer[self.pointer] = reward
self.value_buffer[self.pointer] = value
self.logprobability_buffer[self.pointer] = logprobability
self.pointer += 1
def finish_trajectory(self, last_value=0):
# Finish the trajectory by computing advantage estimates and rewards-to-go
path_slice = slice(self.trajectory_start_index, self.pointer)
rewards = np.append(self.reward_buffer[path_slice], last_value)
values = np.append(self.value_buffer[path_slice], last_value)
deltas = rewards[:-1] + self.gamma * values[1:] - values[:-1]
self.advantage_buffer[path_slice] = discounted_cumulative_sums(
deltas, self.gamma * self.lam
)
self.return_buffer[path_slice] = discounted_cumulative_sums(
rewards, self.gamma
)[:-1]
self.trajectory_start_index = self.pointer
def get(self):
# Get all data of the buffer and normalize the advantages
self.pointer, self.trajectory_start_index = 0, 0
advantage_mean, advantage_std = (
np.mean(self.advantage_buffer),
np.std(self.advantage_buffer),
)
self.advantage_buffer = (self.advantage_buffer - advantage_mean) / advantage_std
return (
self.observation_buffer,
self.action_buffer,
self.advantage_buffer,
self.return_buffer,
self.logprobability_buffer,
)
def mlp(x, sizes, activation=keras.activations.tanh, output_activation=None):
# Build a feedforward neural network
for size in sizes[:-1]:
x = layers.Dense(units=size, activation=activation)(x)
return layers.Dense(units=sizes[-1], activation=output_activation)(x)
def logprobabilities(logits, a):
# Compute the log-probabilities of taking actions a by using the logits (i.e. the output of the actor)
logprobabilities_all = keras.ops.log_softmax(logits)
logprobability = keras.ops.sum(
keras.ops.one_hot(a, num_actions) * logprobabilities_all, axis=1
)
return logprobability
seed_generator = keras.random.SeedGenerator(1337)
# Sample action from actor
@tf.function
def sample_action(observation):
logits = actor(observation)
action = keras.ops.squeeze(
keras.random.categorical(logits, 1, seed=seed_generator), axis=1
)
return logits, action
# Train the policy by maxizing the PPO-Clip objective
@tf.function
def train_policy(
observation_buffer, action_buffer, logprobability_buffer, advantage_buffer
):
with tf.GradientTape() as tape: # Record operations for automatic differentiation.
ratio = keras.ops.exp(
logprobabilities(actor(observation_buffer), action_buffer)
- logprobability_buffer
)
min_advantage = keras.ops.where(
advantage_buffer > 0,
(1 + clip_ratio) * advantage_buffer,
(1 - clip_ratio) * advantage_buffer,
)
policy_loss = -keras.ops.mean(
keras.ops.minimum(ratio * advantage_buffer, min_advantage)
)
policy_grads = tape.gradient(policy_loss, actor.trainable_variables)
policy_optimizer.apply_gradients(zip(policy_grads, actor.trainable_variables))
kl = keras.ops.mean(
logprobability_buffer
- logprobabilities(actor(observation_buffer), action_buffer)
)
kl = keras.ops.sum(kl)
return kl
# Train the value function by regression on mean-squared error
@tf.function
def train_value_function(observation_buffer, return_buffer):
with tf.GradientTape() as tape: # Record operations for automatic differentiation.
value_loss = keras.ops.mean((return_buffer - critic(observation_buffer)) ** 2)
value_grads = tape.gradient(value_loss, critic.trainable_variables)
value_optimizer.apply_gradients(zip(value_grads, critic.trainable_variables))
# Hyperparameters of the PPO algorithm
steps_per_epoch = 4000
epochs = 30
gamma = 0.99
clip_ratio = 0.2
policy_learning_rate = 3e-4
value_function_learning_rate = 1e-3
train_policy_iterations = 80
train_value_iterations = 80
lam = 0.97
target_kl = 0.01
hidden_sizes = (64, 64)
# True if you want to render the environment
render = False
# Initialize the environment and get the dimensionality of the
# observation space and the number of possible actions
env = gym.make("CartPole-v1")
observation_dimensions = env.observation_space.shape[0]
num_actions = env.action_space.n
# Initialize the buffer
buffer = Buffer(observation_dimensions, steps_per_epoch)
# Initialize the actor and the critic as keras models
observation_input = keras.Input(shape=(observation_dimensions,), dtype="float32")
logits = mlp(observation_input, list(hidden_sizes) + [num_actions])
actor = keras.Model(inputs=observation_input, outputs=logits)
value = keras.ops.squeeze(mlp(observation_input, list(hidden_sizes) + [1]), axis=1)
critic = keras.Model(inputs=observation_input, outputs=value)
# Initialize the policy and the value function optimizers
policy_optimizer = keras.optimizers.Adam(learning_rate=policy_learning_rate)
value_optimizer = keras.optimizers.Adam(learning_rate=value_function_learning_rate)
# Initialize the observation, episode return and episode length
observation, _ = env.reset()
episode_return, episode_length = 0, 0
# Iterate over the number of epochs
for epoch in range(epochs):
# Initialize the sum of the returns, lengths and number of episodes for each epoch
sum_return = 0
sum_length = 0
num_episodes = 0
# Iterate over the steps of each epoch
for t in range(steps_per_epoch):
if render:
env.render()
# Get the logits, action, and take one step in the environment
observation = observation.reshape(1, -1)
logits, action = sample_action(observation)
observation_new, reward, done, _, _ = env.step(action[0].numpy())
episode_return += reward
episode_length += 1
# Get the value and log-probability of the action
value_t = critic(observation)
logprobability_t = logprobabilities(logits, action)
# Store obs, act, rew, v_t, logp_pi_t
buffer.store(observation, action, reward, value_t, logprobability_t)
# Update the observation
observation = observation_new
# Finish trajectory if reached to a terminal state
terminal = done
if terminal or (t == steps_per_epoch - 1):
last_value = 0 if done else critic(observation.reshape(1, -1))
buffer.finish_trajectory(last_value)
sum_return += episode_return
sum_length += episode_length
num_episodes += 1
observation, _ = env.reset()
episode_return, episode_length = 0, 0
# Get values from the buffer
(
observation_buffer,
action_buffer,
advantage_buffer,
return_buffer,
logprobability_buffer,
) = buffer.get()
# Update the policy and implement early stopping using KL divergence
for _ in range(train_policy_iterations):
kl = train_policy(
observation_buffer, action_buffer, logprobability_buffer, advantage_buffer
)
if kl > 1.5 * target_kl:
# Early Stopping
break
# Update the value function
for _ in range(train_value_iterations):
train_value_function(observation_buffer, return_buffer)
# Print mean return and length for each epoch
print(
f" Epoch: {epoch + 1}. Mean Return: {sum_return / num_episodes}. Mean Length: {sum_length / num_episodes}"
)