Windows系统部署YOLOv5 v6.1版本的训练与推理环境保姆级教程

文章目录

  • 一· 概述
  • 二· 依赖环境(`prerequisites`)
    • 2.1 硬件环境
    • 2.2 软件环境
  • 三· 环境安装
    • 3.1 创建并激活虚拟环境
    • 3.2 安装`Pytorch`与`torchvision`
    • 3.3 校验`Pytorch`安装
    • 3.4 下载 `YOLOv5` `v6.1` 源码
    • 3.5 安装 `YOLOv5` 依赖
    • 3.6 下载预训练模型
    • 3.7 安装其他依赖
    • 3.8 测试环境安装
    • 3.9 测试训练流程
  • 四· 参考链接

一· 概述

本文档主要记录使用工程源代码,部署YOLOv5训练环境以及测试环境的过程,主要包括以下内容:

  1. YOLOv5对应版本的源码下载
  2. Pytorch的适配版本安装与测试
  3. YOLOv5源码的依赖安装与测试
  4. 其他依赖的版本调整与测试
  5. 字体文件、预训练模型的下载
  6. 训练流程的测试

注:如果需要快速安装推理环境(不需要训练),参考[[YOLOv5快速推理方法]]

二· 依赖环境(prerequisites)

本文档主要记录的是 YOLOv5 v6.1 版本的环境部署与测试,使用 Anacondaminiconda 进行虚拟环境和包管理器,因此在执行安装之前,需要确认机器的预安装环境。

2.1 硬件环境

  • GPU : NVIDIA GeForce GTX2060
  • RAM : 16GB
  • CPU : Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz
  • ROM : 512GB SSD

注: 一般情况下,训练都会在GPU上进行,因此GPU的性能对训练速度有较大的影响。确保本地已安装NVIDIA独立显卡,否则训练耗时会非常长。

2.2 软件环境

  • 操作系统 : Windows 10
  • Anaconda3miniconda3
  • Python : 3.8+
  • NVIDIA驱动 : latest
  • CUDA : 11.2
  • cuDNN : 8.2.1

三· 环境安装

注: 确保上述软硬件环境已经安装完毕,不在赘述。

3.1 创建并激活虚拟环境

# 创建虚拟环境
conda create -n yolo python=3.8 -y

# 激活虚拟环境
conda activate yolo

3.2 安装Pytorchtorchvision

访问Pytorch官方网站,查询符合本地硬件配置与软件环境安装指令,这里选择 适配 CUDA 11.3Pytorch v1.12.1,安装指令如下:

# CUDA 11.3
conda 

你可能感兴趣的:(windows,YOLO)