pytorch 要点之雅可比向量积

自动微分是 PyTorch 深度学习框架的核心。既然是核心,就需要敲黑板、划重点学习。同时,带来另外一个重要的数学概念:雅可比向量积。

pytorch 要点之雅可比向量积_第1张图片

PyTorch中的自动微分与雅可比向量积

自动微分(Automatic Differentiation,AD)是深度学习框架中的关键技术之一,它使得模型训练变得更加简单和高效。

且已知:PyTorch是一个广泛使用的深度学习框架,它内置了强大的自动微分功能。

在本文中,我们将深入探讨PyTorch中的自动微分,并介绍如何使用雅可比向量积(Jacobian Vector Product,JVP)来进行梯度计算,从而优化神经网络的训练过程。

什么是自动微分?

在深度学习中,我们通常需要优化模型参数以最小化损失函数。自动微分是一种计算导数的技术,它能够自动计算复杂函数的导数。PyTorch通过autograd模块实现了自动微分。让我们从一个简单的例子开始,了解PyTorch中的自动微分是如何工作的。

python
复制代码
import torch

# 定义一个变量
x = torch.tensor([2.0], requires_grad=True)

# 定义一个函数
y = x ** 2

# 计算导数
y.backward()

# 打印导数
print(x.grad)

在这个例子中,我们创建了一个张量x,并指定requires_grad=True,这表示我们想要对x进行自动微分。然后,我们定义了一个简单的函数y = x**2,并通过y.backward()计算了y关于x的导数。最后,我们打印出了导数,即x.grad

雅可比向量积(Jacobian Vector Product)

雅可比矩阵描述了一个向量值函数的导数。在深度学习中,我们通常不需要完整的雅可比矩阵,而是只对雅可比向量积了解相关。

雅可比向量积是一个向量和一个向量的乘积,其中第一个向量是函数的导数,第二个向量是任意向量。

PyTorch中的autograd模块提供了autograd.grad函数,使我们能够计算雅可比向量积。

下面是一个简单的例子,演示了如何使用雅可比向量积:

python
复制代码
import torch

# 定义一个变量
x = torch.tensor([2.0], requires_grad=True)

# 定义一个函数
y = x ** 2

# 计算雅可比向量积
v = torch.tensor([1.0])
Jv = torch.autograd.grad(y, x, v)

# 打印结果
print(Jv[0])

在这个例子中,我们定义了一个向量v,然后使用torch.autograd.grad计算了雅可比向量积Jv

最后,打印出结果。

雅可比向量积在训练神经网络中起到关键作用,特别是在使用优化算法进行参数更新时,它能够高效地计算梯度,提高训练速度和稳定性。

结论

PyTorch中的自动微分和雅可比向量积是深度学习中不可或缺的工具。

以上,我们深入了解了如何在PyTorch中使用自动微分,并了解了雅可比向量积的基本概念和应用。

这些技术使得模型训练更加简单和高效,为深度学习的发展提供了强大的支持。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

有需要的小伙伴,可以Vx扫描下方二维码免费领取==

在这里插入图片描述

你可能感兴趣的:(pytorch,人工智能,python,facebook,深度学习,机器学习,webpack)